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Abstract

This paper provides a model selection procedure for multivariate models, generalizing

the model confidence set (MCS) procedure to systems of N > 1 dependent variables.

A (1−α) level MCS collects the set of models with equal predictive ability, based on

a sequential elimination procedure that relies on an equivalence test. The latter relies

on supremum-type t and Hotelling-type T 2 statistics which account for correlation

between loss differentials. The procedure shows good size and power properties in

simulations. The performance of 14 candidate asset pricing models is assessed using

the Fama and French research portfolios, with monthly data for the period 1972-

2013. Under quadratic loss, the MCS contains at most one model for out-of-sample

tests, but it often includes multiple competing models for in-sample tests: models

are much harder to distinguish. Overall, out-of-sample tests and a larger number of

more heterogenous test assets provide more information to disentangle models. The

market-based capital asset pricing model is never included in the MCS.
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Société canadienne de science économique, the 2021 Conference of the International Association for Applied
Econometrics, the 27th International Conference Computing in Economics and Finance, the 55th Annual
Conference of the Canadian Economics Association, and the Sixteenth CIREQ Ph.D. Students’ Conference
for the insightful comments. I am grateful to Kevin Sheppard for providing for the code for the univariate
model confidence set procedure.

†Email: florian.richard@fsa.ulaval.ca. Website: https://sites.google.com/view/florianrichard. Univer-
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1 Introduction

Choosing among competing models and associated multiple testing is pervasive in eco-

nomics and finance [see Harvey et al. (2016), Harvey and Liu (2020), Giglio et al. (2021),

Grønborg et al. (2021), and Wang et al. (2023)]. Both empirical and theoretical research

typically provide support for multiple models, and challenges related to multiple testing

remain [see for example Romano and Lehmann (2005), Romano and Wolf (2016), List et al.

(2019), and Spreng and Urga (2022)]. In this context, a natural question is whether empir-

ical models can be differentiated statistically. Moreover, the ability for empirical models

to explain multiple dependent variables is crucial in data-rich environments, whereby sys-

tems of N > 1 predictive equations raise dimensionality problems that have received less

attention to date.

This paper makes three contributions: (i) I generalize the work of Hansen et al. (2011)

to systems of N > 1 dependent variables, providing a statistically meaningful solution to

unresolved multiple comparisons issues by using a confidence set approach; (ii) in view of

the dimensionality, I propose supremum t and Hotelling T 2 statistics, which account for

potential correlations across the N -variate loss differentials, to test the equal predictive

ability of candidate models; and (iii) empirically, I provide an alternative perspective on

underlying asset pricing issues, in particular, on the relevance of various anomalies, the

information content of in- and out-of-sample assessments, and of predictions across short

and long term horizons.

Sequential pairwise testing introduces well-known statistical problems, often character-

ized by the inflation of the family-wise error rate (FWER), i.e. the probability of making

at least one type I error. Although Bonferroni- and Šidák-type corrections offer a solution,

the former often results in decreased statistical power when dealing with a large number

of tests, and the latter can be either excessively liberal or too conservative when tests are
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dependent; see Montiel Olea and Plagborg-Møller (2019) for a recent review of these issues.

I propose to use the MCS procedure, which controls the asymptotic FWER at level α, to

address these issues. The MCS procedure, consisting of a series of tests of equal predictive

ability, outputs a set of models with equal statistical performance and known confidence

level: the (1− α) level MCS, denoted M̂∗
1−α, is the set of best models from a collection of

candidate models M0, i.e., the set of models that survived a sequential selection procedure

based on an equivalence test δM, assessed in- or out-of-sample, and an elimination rule

eM, both determined by the user. Similarly to confidence intervals for point estimates,

the MCS selects a set of models for some confidence level (1− α): M̂∗
1−α covers the set of

models with equal predictive ability with probability (1− α).1

The usefulness of the MCS procedure can best be illustrated through the many published

empirical models in the beta-pricing context. Lewellen et al. (2010) qualifies these findings

as “an embarrassment of riches”. In his seminal contribution, Harvey (2017) draws serious

attention to the underlying multiple testing problems, and suggests raising the hurdle for

the discovery of new factors: “our standard testing methods are often ill-equipped to answer

the questions that we pose”. Harvey et al. (2016) also documents more than 300 possible risk

factors since 1964. As recent empirical work points to more stringent statistical standards

to achieve factor significance [Lewellen et al. (2010), Harvey and Liu (2019), Gospodinov

and Robotti (2021)], the MCS procedure provides a formal confidence set with known

confidence level (1 − α), to infer the set of models with equal predictive ability.2 The

MCS procedure offers the additional benefit of accommodating misspecification among

the candidate models. As the null hypothesis of the MCS is that the loss functions are

indistinguishable, it is possible to select a misspecified model. The MCS procedure yields

a non-empty set, ensuring the identification of a winning model, even when all candidates

1The MCS can be interpreted as a test inversion of a sequential procedure, although Hansen et al.
(2011) do not present it in this way.

2For applications of the MCS procedure in finance, see Hansen et al. (2003), Liu et al. (2015), Varneskov
(2016), and Grønborg et al. (2021).
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are misspecified.

This paper primarily focuses on addressing the challenge of effectively combining and

summarizing the information contained in multidimensional loss differentials while ensuring

the validity of the MCS procedure. This paper offers three keys contributions.

First, I provide an extension of the MCS procedure to multivariate losses under gen-

eral assumptions, and present the asymptotic theory in the N -equation case. Stacking

the loss differential vectors preserves the necessary statistical properties to use a quadratic

form statistic, and captures the information content of multidimensional dependent vari-

ables. Currently, an approach that can accommodate N -dimensional loss functions for the

computation of the MCS has not been considered to date.

Second, I propose to use two statistics, a supremum t (or sup t) statistic, and a Hotelling

T 2 statistic, for computing the MCS. The sup t statistic, computed on an equation-by-

equation basis, allows for a large cross section (N) relative to the sample size (T ), a useful

feature when testing a large number of dependent variables. The Hotelling T 2 statistic,

adapted from the multivariate test of equal predictive ability of Mariano and Preve (2012),

effectively summarizes the information contained within the system of N equations. Both

statistics consider the correlations between loss differentials through the application of

a moving block bootstrap. I show the validity of the bootstrap implementation using

the proposed statistics, and present the conventional size and power properties through

two simulation designs: (i) a design based on dependent losses drawn from a multivariate

normal distribution, encompassing varying parameter values for between-model and within-

model correlations; and (ii) an empirically relevant design which uses regression models,

parameterized according to estimated models found in the literature. The procedure works

well in terms of both size and power. When considering a single “best” model based on a

quadratic loss function, the MCS behaves as theoretically predicted in Corollary 1 of Hansen

et al. (2011). For multiple “best” models, the procedure achieves the conventional coverage
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probability for reasonable sample sizes, and in most cases, eliminates all inferior models

when the sample size is smaller than 1,000. Empirically relevant simulations underline the

importance of the market factor.

Third, I provide an analysis of a large set of candidate factor models using the MCS ap-

proach, focusing on the Fama and French research portfolios as dependent variables, using

monthly data spanning from 1972 to 2013. For both statistics, different candidate models

are selected by the out-of-sample tests, including accounting-, mispricing- and liquidity-

based factors, although at most one model is selected. For in-sample predictions, distin-

guishing candidate models becomes more challenging, particularly for a smaller number

of test portfolios. In particular, the MCS always excludes the model that contains only

the market risk premium. In light of the conflicting evidence regarding the effectiveness

of the market factor, this result supports recent work on the success of the market factor,

notably Harvey and Liu (2021), establishing its importance in conjunction with other risk

factors, namely the size factor. Ultimately, using out-of-sample predictions proves valuable

in discerning competing models.

Section 2 outlines the theoretical framework and the MCS procedure. I present simu-

lation results in Section 3, and the empirical analysis in Section 4. Section 5 concludes.

1.1 Notation

Convergence in probability is denoted by
d−→. A m-dimensional multivariate normal dis-

tribution with mean vector µm and covariance matrix Σ is denoted by Nm(µm,Σ), and

0N denotes the N -dimensional vector of zeros.
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2 Framework

This section presents the econometric framework for multivariate losses, the model confi-

dence set procedure, and the proposed sup t and Hotelling T 2 statistics.

2.1 Setting

To define the MCS procedure within the framework of a multivariate test of equal pre-

dictive ability, consider the multivariate stochastic process W ≡ {Wt : Ω → RKi+N , i ∈

{1, . . . ,m}, t = 1, . . . , T} where Ki is the number of predictor variables in model i, N is

the number of dependent variables, m is the number of models under consideration, and T

is the sample size. W is defined on the complete probability space (Ω,F , P ), where Ω is a

sample space, F is a σ-field on Ω, and P is a probability measure. Define Wt = (Y ′
t ,X

′
t),

where Yt : Ω → RN denotes a vector of dependent variables,Xt : Ω → RKi denotes a vector

of predictors, and Ft = σ(W1, . . . ,Wt) denotes the σ-field generated from the history of

Wt. The predicted values of Yt using model i at the forecasting horizon h are denoted as

f̂i,t+h = fi(Wt,Wt−1, . . . ,W1; β̂i,l), (2.1)

where fi is a measurable-Ft forecasting function for model i, and β̂i,l is a (Ki ×N) vector

of estimated parameters with bootstrap block length l. In-sample forecasts are denoted

by the special case h = 0 and Wt = Xt. Each forecasting model i admits a loss function

Li,t+h = L(Yt+h, f̂i,t+h) at time t. A popular choice for the loss function includes the

quadratic loss L
(n)
i,t+h = (Y

(n)
t+h − f̂

(n)
i,t+h)

2, for n = 1, . . . , N , where Y
(n)
t+h is the observation for

the nth dependent variable at time t + h, and f̂
(n)
i,t+h is the forecast for the nth dependent

variable at time t + h. Based on a loss function for models i and j, and a σ-field Gt, the
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null hypothesis of unconditional equal predictive ability between models i and j is

H0,M : E[L(Yt+h, f̂i,t+h)−L(Yt+h, f̂j,t+h)] = E[dij,t+h] = 0N ∀ i, j ∈ M, (2.2)

where dij,t+h is the loss differential between models i and j at time t+h, and M is the set

of models under consideration. In this multivariate context, the next section presents the

MCS procedure.

2.2 The Model Confidence Set Procedure

The multivariate counterpart of Hansen et al. (2011)’s “set of superior objects” is

M∗ ≡
{
i ∈ M0 : µij ≤ 0N for all j ∈ M0

}
. (2.3)

The central idea of the MCS procedure is to determine whether a given model i belongs

to the set of superior objects. The number of models in M is m, such that the elements

in M are i1, . . . , im. Following the notation of Hansen et al. (2011), the MCS procedure

relies on an equivalence test δM to test H0,M and an elimination rule eM to eliminate

models in M. The equivalence test takes on values δM = 0 if H0,M is not rejected, and

δM = 1 if H0,M is rejected. The elimination rule eM determines the model removed from

M when δM = 1. The output of this algorithm is M̂∗
1−α, the model confidence set. Figure

1 outlines the procedure for determining M̂∗
1−α. The assumptions of Hansen et al. (2011)

with regards to asymptotic level and power apply to the multivariate case, and are stated in

the Supplementary Material for completeness. The MCS procedure also produces p-values.

The p-value p̂i for model i is defined as the smallest p-value such that model i belongs to

the MCS. Thus, a model with p̂i = 1 will be included in the confidence set. This p-value

is given by p̂eMj
= maxi≤jPH0,Mi

, where PH0,Mi
is the p-value that corresponds to the null
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hypothesis H0,Mi
. In a multivariate setting, we can test H0,M using a sup t and a Hotelling

T 2 statistic, as outlined in the next section.

Set M = M0

Test H0,M at level α

H0,M is not rejected

H0,M is rejected

Set M̂∗
1−α = M

Update M by
removing the most

inferior model

Figure 1: The model confidence set algorithm. M0 denotes the set of candidate models. After
updating the placeholder set M as necessary, the procedure stops at the first non-rejection, and
the remaining models form the estimated MCS, M̂∗

1−α.

2.3 A Multivariate Test of Unconditional Equal Predictability

To state the central limit theorem that justifies the use of a general quadratic form test

statistic, it is necessary to impose two assumptions on the loss differentials:

Assumption 1. {dij,t}i,j∈M0 is mixing of size −r/(r − 2) for r > 2. Additionally,

E∥dij,t∥r < ∞.

Assumption 2. {dij,t}i,j∈M0 is covariance stationary.

Assumption (2) assumes stationarity on the loss differential, but not on the losses them-

selves.

2.3.1 Hotelling T 2 Statistic

The T 2 statistic provides information about the joint significance of the loss differentials.

It can be viewed as a weighted average of the squared means of the loss differentials for all

equations. Hotelling-type statistics remain popular to assess multivariate models in this

context [see Gibbons et al. (1989), Shanken (1985), and Beaulieu et al. (2023)]. In order
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to construct a Hotelling T 2 statistic to test the hypothesis that models i and j have equal

predictive ability, consider the transformed losses V n
t = ι′⊥L

(n)
t , where ι′⊥ is the orthogonal

complement of the m-dimensional vector ι = (1, . . . , 1)′. Then, stack the V n
t vectors into

the N(m− 1)-dimensional vector

Vt =
[
V 1
t . . . V N

t

]′
= (IN ⊗ ι⊥)

[
L
(1)
t . . . L

(N)
t

]′
, (2.4)

with expectation θ = E[Vt]. Since ι′⊥ι = 0, the transformed variable Vt has expectation

equal to 0N(m−1) under H0,M. Then, under Assumptions (1) and (2), Lemma 2.1 justifies

the use of a quadratic form-type statistic. The proof is available in the Supplementary

Material.

Lemma 2.1. Testing H0,M : µij = 0N is equivalent to testing H0,M : θ = 0N(m−1).

Furthermore, for a fixed N , we have:

T 1/2(V̄ − θ) d
) N(0N(m−1),Ω) (2.5)

where V̄ = T−1
∑T

t=1 Vt, Ω = limT→∞ var(T 1/2V̄ ).

The covariance matrix Ω is estimated using a heteroskedasticity and autocorrelation con-

sistent estimator via a moving block bootstrap, following Gonçalves and White (2005). The

proposed Hotelling-type T 2 statistic is based on Mariano and Preve (2012)’s statistic for

tests for equal predictive ability. I construct the Hotelling T 2 statistics

T 2
ij = T (d̄ij − µ0

ij)
′Σ−1

ij (d̄ij − µ0
ij), and T 2

i· = T (d̄i· − µ0
i·)

′Σ−1
i· (d̄i· − µ0

i·), (2.6)

where d̄ij is the sample counterpart of µij, d̄i· is the average of d̄ij over m, and µ0
ij and

µ0
i· are the values of µij and µi· under H0,M. The covariance matrices Σij = T−1(dij,t −
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d̄ij)(dij,t − d̄ij)
′ and Σi· = T−1(di·,t − d̄i·)(di·,t − d̄i·)

′ are computed with a moving block

bootstrap. The resulting statistic for the elimination rule eM can be written as

Tmax,M ≡ max
i,j∈M

T 2
i· . (2.7)

2.3.2 Supremum t Statistic

The supremum t statistic is based on selecting the largest t statistic among the statistics

computed from the individual estimation of each equation in the multivariate system.3 The

supremum statistic has the advantage of two attractive properties: (i) it does not require

the inversion of a possibly high-dimensional covariance matrix; and (ii) by estimating

the system equation-by-equation, it allows extensions to the case where N > T . These

advantages may come at the expense of power compared to the T 2 statistic, particularly

the residuals of the regressions are only weakly correlated, as is shown later in simulations.

For each equation n ∈ {1, . . . , N}, I use a t-statistic to test each of the sub-null hypotheses

H ij
0,M : µij ∈ H0 for all i, j ∈ M and H ij

A,M : µij ∈ HA for all i, j ∈ M, (2.8)

where H0 is the set compatible with the null hypothesis H0,M, and HA is the set compat-

ible with the alternative hypothesis HA,M. When the distribution of the statistic can be

simulated, bootstrapping the critical values avoids costly level adjustments when dealing

with combined statistics, while maintaining the dependence between the statistics; see Du-

four et al. (2015) and Harvey and Liu (2021) for assumptions under which the bootstrap

is asymptotically valid. The supremum t statistics take the following form:

tnM,sup = supi,j t
n
ij = supi,j

[
d̄nij/

√
var(d̄nij)

]
and tM,sup = supnt

n
M,sup, (2.9)

3Other criteria exist to combine p-values, see Tippett et al. (1931); Fisher (1932); Pearson (1933), and
Bergamelli et al. (2019); Dufour et al. (2015); Spreng and Urga (2022) for applications.
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for n = 1, . . . , N , where var(d̄nij) is estimated via bootstrap. The statistic tnM,sup is used

to compute the t statistic equation-by-equation, and the statistic tM,sup is the elimination

rule eM.

2.4 Bootstrap Implementation and Validity

Once the MCS p-values are computed, the elimination rules are used to exclude the inferior

models. The block bootstrap procedure for multivariate loss functions is detailed in the

Supplementary Material. To show the validity of the bootstrap procedure, consider the

(Nm× 1) vector of multivariate sample losses

Z̄ = (d̄1·, . . . , d̄m·)
′, (2.10)

which is expressed as a linear transformation of V̄ : Z̄ = G′V̄ , where G is a fixed ((m −

1)N ×Nm) matrix. Consequently, the result follows in Lemma 2.2. The proof is stated in

the Supplementary Material.

Lemma 2.2. Under assumption 1, for a fixed N , we have:

T 1/2(Z̄ −ψ) d
) NNm(0Nm,ΩZ) (2.11)

where ψ = E[Z̄] and ΩZ = limT→∞ var(T 1/2Z̄).

The covariance matrix ΩZ is estimable via bootstrap. Next, I present a result regarding the

asymptotic distribution of the Tmax,M statistic, ensuring the asymptotic validity of the boot-

strap procedure. Let ω2
i denote the ith diagonal block of ΩZ , and ω̂

2
i,T ≡ v̂ar

(
T 1/2d̄i.

)
=

T v̂ar
(
d̄i·

) p→ ω2
i , and let D ≡ diag (ω2

1, . . . ,ω
2
m). Consider the Nm-dimensional random

variable ξ, distributed according to NNm(0Nm,ϱ), where ϱ = D−1/2ΩZD
−1/2; as well as the

distribution Fϱ of the statistic maxi ξ
′
iξi. Theorem 2.3 shows that the limiting distribution
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of the Tmax,M statistic is Fϱ. The proof can be found in the Supplementary Material.

Theorem 2.3. Suppose that assumptions 1 and 2 hold. Then, for the statistic (2.7),

we have Tmax,M
d−→ Fϱ under the null hypothesis H0,M, and Tmax,M

p−→ ∞ under the

alternative hypothesis HA,M.

Given the result from Theorem 2.3, the moving-block bootstrap can be implemented.

Under these conditions, the bootstrap implementation follows as in Hansen et al. (2011); as

the distribution of the Tmax,M statistic is the same as its bootstrapped equivalent Tb∗,max.

Details are available in the Supplementary Material. In the next section, two simulation

designs showcase the procedure’s properties.

3 Simulation Study

In this section, I consider two simulation designs, similar to Designs I.B and II of Hansen

et al. (2011), with the adaption that the vectors of losses within a model can admit some

degree of dependence for Design I.B, and added empirical relevance for Design II.

3.1 Design I: Dependent Losses

In this design, I generate random dependent losses by drawing realizations from a multi-

variate normal distribution, which is parameterized by a covariance matrix with Kronecker

product structure, to allow for both between- and within-model correlation. The block

bootstrap length is set to l = 2, the number of bootstrap iterations to B = 1,000, and the

number of simulation replications to C = 2,500.

Let m0 denote the number of best models from a set of m candidate models. This

design uses a (T ×Nm) matrix of losses L = [Li1 , . . . ,Lim ] drawn from NNm(θ,Σ). Each
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dependent variable in a model admits a loss with mean θ, parameterized as follows:

θ =


0N if the model belongs to the MCS,

ιN otherwise, where each element of ιN is ι = 1/(m−m0).

(3.1)

The covariance matrix is set as Σ = Σϕ ⊗ Σρ, where Σ is parameterized so that the

covariance matrix between the losses of models i and j, Li and Lj, is Σϕ; and that for a

given model i, the covariance between each (T × 1) loss vector lni for any given dependent

variable n, is Σρ. The (n, q)
th and (i, j)th elements of Σϕ and Σρ are defined as Σϕ(n, q) =

ϕ|n−q| and Σρ(i, j) = ρ|i−j|, for n, q = 1, . . . , N and i, j = 1, . . . ,m, respectively. Σϕ and

Σρ are of dimension (N ×N) and (m×m), respectively. The results of the simulation for

m0 = 1, 2 and 5 best models, m = 10 candidate models, and N = 5 dependent variables

are presented in Figures 2 and 3. Additional simulation results for N = 10 and N = 50

dependent variables are available in the Supplementary Material.4 The top, middle, and

bottom panels show the results form0 = 1, 2 and 5 best models, respectively. Figure 2 plots

the frequency at which the best model is selected by the MCS procedure. This frequency

reflects the ability of the procedure to include the best model(s), and is interpreted as

the size property of the procedure. Figure 3 plots the average cardinality (the number of

elements in the set) of the MCS. This property illustrates the ability of the procedure to

eliminate the inferior models.

Overall, the procedure behaves well and delivers the expected coverage probability

and number of selected models. The top panels in Figure 2 verify Corollary 1 of Hansen

et al. (2011) stated in the Supplementary Material for both considered statistics, which

implies that if the cardinality of the true MCS M∗ is one, then the coverage probability

P (M∗ = M̂∗
1−α) of the MCS is one in the limit. This result is achieved for sample sizes

4In the case where N is large relative to T , the covariance matrix is near-singular and matrix inversion
is inaccurate. Those cases are omitted for the Hotelling statistic.
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(a) m0 = 1, supremum t statistic
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Figure 2: Simulation design for the supremum t and Hotelling T 2 statistics with dependent
losses, m = 10 candidate models, m0 = 1, 2 and 5 best models, N = 5 dependent variables, and
α = 0.05. The left panel shows the results for the supremum t statistic, and the right panel shows
the results for the Hotelling T 2 statistic. The top, middle, and bottom panels show the results for
1, 2 and 5 best models, respectively. In each panel, the vertical axis shows the frequency at which
the best model is included in the estimated model confidence set M̂∗

1−α, and the horizontal axis
shows the sample size.

14



500 1,000 1,500 2,000 2,500 3,000

1
2
3
4
5
6
7
8
9
10

ρ = 0, ϕ = 0

ρ = 0, ϕ = 0.5

ρ = 0, ϕ = 0.75

ρ = 0.5, ϕ = 0

ρ = 0.5, ϕ = 0.5

ρ = 0.5, ϕ = 0.75

ρ = 0.75, ϕ = 0

ρ = 0.75, ϕ = 0.5

ρ = 0.75, ϕ = 0.75

(a) m0 = 1, supremum t statistic

500 1,000 1,500 2,000 2,500 3,000

1
2
3
4
5
6
7
8
9
10

(b) m0 = 1, Hotelling T 2 statistic

500 1,000 1,500 2,000 2,500 3,000

1
2
3
4
5
6
7
8
9
10

(c) m0 = 2, supremum t statistic

500 1,000 1,500 2,000 2,500 3,000

1
2
3
4
5
6
7
8
9
10

(d) m0 = 2, Hotelling T 2 statistic

200 400 600 800

1
2
3
4
5
6
7
8
9
10

(e) m0 = 5, supremum t statistic

200 400 600 800

1
2
3
4
5
6
7
8
9
10

(f) m0 = 5, Hotelling T 2 statistic

Figure 3: Simulation design for the supremum t and Hotelling T 2 statistics with dependent
losses, m = 10 candidate models, m0 = 1, 2 and 5 best models, N = 5 dependent variables, and
α = 0.05. The left panel shows the results for the supremum t statistic, and the right panel shows
the results for the Hotelling T 2 statistic. The top, middle, and bottom panels show the results for
1, 2 and 5 best models, respectively. In each panel, the vertical axis shows the average cardinality
of the estimated model confidence set M̂∗

1−α, and the horizontal axis shows the sample size.
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greater than 600 for the sup t statistic, and greater than 1,000 for the T 2 statistic. In

conjunction with the top panels of Figure 2, the top panels of Figure 3 show that not only

the procedure selects the best model in the MCS asymptotically, but only the best model,

with probability one. For parameterizations where there exists more than one best model

(the middle and bottom panels in Figures 2 and 3), the frequency at which the best models

are included in the MCS rapidly reaches the desired (1−α) coverage probability, and even

exceeds that threshold for small sample sizes when m0 = 2. The MCS is an asymptotic

procedure, and is slightly conservative for small sample sizes in this case. When there are

five best models, inclusion frequency with the sup t statistic reaches 95% coverage after

1,000 observations - faster than with the T 2 statistic. This happens at the expense of

power, especially for low values of the within-model correlation parameter ρ. For ρ = 0,

the T 2 statistic selects close to five models for sample sizes as low as 200, where the sup

t statistic requires at least T = 500. When the within-model correlation parameter ρ is

close to zero, the off-diagonal elements of Σij are small, and in reverse, the off-diagonal

elements of Σ−1
ij are large, and the statistic is large. Consequently, when ρ is closer to zero,

the statistic rejects more, and the number of included models is lower.

Figure 3 captures the power properties of the MCS procedure. All else equal, the average

number of selected models decreases for greater values of the between-model correlation

parameter ϕ. This additional power reflects the information captured by ϕ, making it easier

for the procedure to reject incorrect models. However, greater values of the within-model

correlation parameter ρ increase the average number of selected models, making it harder

to reject incorrect models, in contrast with the results of Hansen et al. (2011). This pattern

remains for m0 = 1, 2 and 5 best models and holds true for both statistics. For the size

property, there is no persistent pattern with respect to the different values of the correlation

parameters.

16



3.2 Design II: Regression Models

This simulation design is based on empirically calibrated asset pricing factor models of the

form:

Rn,t−rft = αn+f1,tβ1,n+. . .+fK,tβK,n+ϵn,t, for t = 1, . . . , T, and n = 1, . . . , N. (3.2)

The dependent variables Yn,t = Rn,t − rft and the regressors are the excess returns of the

portfolios and factors described in Section 4. I consider three data-generating processes

(DGP) constructed from the regressors of the Fama and French (2015) five-factor model.

The first DGP consists of a constant term and the market premium factor MKTt. The

second DGP is the Fama and French (1993) three-factor model, which is composed of a

constant term, the market premium factor MKTt, the size factor SMBt, and the value

factorHMLt. The third DGP is the model which includes all the regressors in the Fama and

French (1993) three-factor model, along with the profitability RMWt and the investment

CMAt factors, i.e. the Fama and French (2015) five-factor model. I consider a sample with

492 monthly observations, from July 1972 to June 2013. I estimate different combinations

of the regressors of the Fama and French (2015) model, starting from a model containing a

constant term only, and progressively adding regressors, and additional combinations which

exclude the market factor MKTt. In total, I consider 10 different combinations which will

be the set of candidate models M0. The simulation is conducted as follows:

1. Estimate the parameters αn, β1,n, . . . , βK,n and the covariance matrix Σ for each can-

didate model i ∈ M0.

2. Compute the fitted values Ŷn,t for each candidate model i ∈ M0.

3. Draw errors Un,t from a multivariate normal distribution with covariance Σ̂ for each

candidate model i ∈ M0.
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4. Compute the simulated fitted values Ŷ s
n,t = α̂n + f1,tβ̂1,n + . . . + fK,tβ̂K,n + Un,t for

each candidate model i ∈ M0.

5. Compute Ln,t = (Ŷ DGP
n,t − Ŷ s

n,t)
2, the quadratic loss between the DGP’s fitted values

and the other candidates’ simulated values.

6. Repeat steps (1) to (5) C times.

7. Compute the frequency at which each model is selected in the MCS M̂∗
1−α.

The frequencies for the sup t and the Hotelling T 2 statistics are presented in Table 1.

Shading indicates the DGP. The block bootstrap length is l = 12, and additional results

for l = 3 and 24 are available in the Supplementary Material. It appears costly to omit the

market factor: in all cases, the models that exclude the market factor are never selected in

the MCS, even when other regressors are added. Inclusion frequencies align between the

two statistics in this respect. The size and value factors show some redundancy, and are

included at a lower frequency than the other factors, even when the DGP is a model that

includes them, like the Fama and French (2015) model. Moreover, the inclusion frequencies

tend to decrease as the number of test portfolios increases for the Hotelling statistic, whereas

the frequencies computed using the supremum t statistic are largely unaffected. Results

pertaining to the power properties of the procedure are in line with that of Design I, in

that the Hotelling T 2 statistic always includes less models in the MCS than the supremum

t statistic. Also, a larger number of test portfolios helps in eliminating inferior models.
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Table 1: Frequency at which each candidate model is included in the 95% MCS.

sup t statistic Hotelling T 2 statistic

Portfolios Candidate Models DGP 1 DGP 2 DGP 3 DGP 1 DGP 2 DGP 3

R12IND 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X1 0.9996 0.9992 0.9988 0.9964 0.9976 0.9972
1, X1, X2 0.9856 0.0000 0.0000 0.9356 0.0000 0.0000
1, X1, X2, X3 0.9852 0.9876 0.0000 0.9248 0.9532 0.0000
1, X1, X2, X3, X4 0.9796 0.9784 0.7868 0.8748 0.8996 0.6568
1, X1, X2, X3, X4, X5 0.9788 0.9756 0.9636 0.8848 0.9032 0.9196
1, X2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3, X4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3, X4, X5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average #MCS 4.9288 3.9408 2.7492 4.6164 3.7536 2.5736

R25ME/BEME 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X1 0.9996 1.0000 1.0000 0.9432 0.9936 0.9972
1, X1, X2 0.9968 0.0000 0.0000 0.7508 0.0000 0.0000
1, X1, X2, X3 0.9852 0.9844 0.0872 0.5176 0.7536 0.0004
1, X1, X2, X3, X4 0.9884 0.9684 0.9288 0.4816 0.6008 0.5392
1, X1, X2, X3, X4, X5 0.9868 0.9716 0.9860 0.4736 0.5812 0.8600
1, X2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3, X4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3, X4, X5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average #MCS 4.9568 3.9244 3.0020 3.1668 2.9292 2.3968

R49IND 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X1 0.9964 0.9936 0.9912 0.6060 0.6912 0.7748
1, X1, X2 0.9724 0.0016 0.0000 0.2556 0.0016 0.0000
1, X1, X2, X3 0.9784 0.8988 0.0188 0.2420 0.3276 0.0064
1, X1, X2, X3, X4 0.9768 0.9080 0.8364 0.2564 0.3236 0.3412
1, X1, X2, X3, X4, X5 0.9788 0.8992 0.8620 0.2404 0.3188 0.5348
1, X2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3, X4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1, X2, X3, X4, X5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average #MCS 4.9028 3.7012 2.7084 1.6004 1.6628 1.6572

Notes: #MCS denotes the cardinality of the estimated model confidence set M̂∗
1−α. The block

bootstrap length is l = 12. Shading denotes the DGP for each experiment.

In the next section, I propose to test a large number of asset pricing factors models that

have received support in the literature using the MCS procedure.
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4 Model Confidence Sets for Asset Pricing Models

In this section, I apply the MCS procedure to a set of multivariate asset pricing factor

models. This analysis highlights three key empirical facts. First, there exists striking dif-

ferences between the in-sample (IS) and out-of-sample (OOS) results. The IS MCS always

contains more models than the OOS MCS. Second, the IS tests based on the Hotelling

statistic eliminate more inferior models than the sup t ones. Third, OOS results depend

largely on the considered test portfolios.

Recently, numerous approaches have been developed to compare asset pricing models;

namely using Sharpe ratio-based statistics [Fama and French (2018), Kan et al. (2019),

Barillas et al. (2020)], machine learning methods [Feng et al. (2020), Gu et al. (2020), Kozak

et al. (2020)], mispricing distance measures [Gospodinov et al. (2013), Gagliardini and

Ronchetti (2020), Zhang et al. (2021)], and Bayesian methods [Barillas and Shanken (2018),

Bryzgalova et al. (2023)].5 While these newly introduced techniques may be sensitive

to (i) distributional assumptions, (ii) hyperparameter tuning, and (iii) factor tradability

assumptions, the MCS procedure provides a flexible framework for the evaluation of asset

pricing models, which can accommodate tradable or non-tradable factors for a variety of

loss functions, and aims to control coverage, i.e., the probability of including the true

unknown set of superior models. In contrast to tests of superior predictive ability [see

Hansen (2005), Giacomini and White (2006), and Li et al. (2022)], the MCS procedure

uses an equal predictive ability test, implying that choosing a benchmark model to compare

against is not required. Moreover, the MCS procedure remains agnostic to the modeling

process, and can be viewed as a model-free approach: the researcher can receive series of

candidate predictions, and compute the MCS to obtain the set of modeling approaches

5See Weigand (2019) and Giglio et al. (2022) for a review of machine learning applications in empirical
asset pricing, and Barillas and Shanken (2017), Hou et al. (2018), He et al. (2022) and Pukthuanthong
et al. (2018) for factor models comparison.
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with equal predictive ability.

The considered factor models depict the relationship between expected returns of a

portfolio Rn over the risk-free rate rf , and the risk factors f :

E[Rn − rf ] = βnE[f ], (4.1)

where βn is a vector of factor loadings (or sensitivities) for portfolio n defined as βn =

[β1,n β2,n . . . βK,n], and f is a vector of factors defined as f = [f1 f2 . . . fK ]
′. The portfolio

returns are commonly referred to as the test portfolios. The expected returns model states

that the expected excess returns on the test portfolios are proportional to the expected

returns on the factors: investors must be compensated for their exposure to risk factors

based on the corresponding loadings βn. The loadings can be estimated in the following

regression:

Rn,t−rft = αn+f1,tβ1,n+. . .+fK,tβK,n+ϵn,t, for t = 1, . . . , T, and n = 1, . . . , N, (4.2)

where Rn,t, r
f
t , and fk,t are the time-t counterpart of the variables in equation (4.1), and

ϵn,t is the error term associated with portfolio n at time t. When dealing with traded

factors, the loadings are interpreted as portfolio weights. Since the factors are identical

across the N equations and I allow for correlations across portfolios, estimating the mul-

tivariate regressions in equation (4.2) is equivalent to estimating a system of seemingly

unrelated equations (SURE), which is performed via ordinary least squares (OLS). For the

test portfolios, I use the Fama and French research portfolios available on Professor French’s

website.6 The return series are value-weighted monthly portfolio returns of U.S. stocks on

the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), and the

NASDAQ Stock Market. Portfolios are rebalanced each June and are sorted by the market

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html#Research
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equity (size) and the book-to-market value ratio (N = 25), and the industry (N = 12 and

N = 49), as suggested by Lewellen et al. (2010). The portfolios formed on size and book-

to-market are the intersection of five portfolios formed on size and five portfolios formed on

book-to-market (B/M). The industry portfolios are sorted according to the industry that

the issuing firm falls under using the Compustat Standard Industrial Classification (SIC)

codes for the previous fiscal year, or the Center for Research in Security Prices (CRSP)

code if the latter is unavailable. Summary statistics and industry classifications for the test

portfolios are presented in the Supplementary Material. I consider the time-t quadratic

loss:

Li,t = [(R1,t − R̂i
1,t)

2, . . . , (RN,t − R̂i
N,t)

2], (4.3)

where R̂i
n,t is the return of portfolio n at time t, estimated by model i. To compute each

statistic, I use a moving-block bootstrap with block length l = 12. The bootstrap procedure

is detailed in the Supplementary Material.

I consider the 14 asset pricing models presented in Table 2, over a time period from July

1972 to June 2013, totaling 492 observations.7 Detailed factor descriptions are available in

the Supplementary Material. As seen in the simulations, this sample size is often sufficient

to achieve (1− α) probability coverage.

7The integration of a benchmark model through cross-validation would be a useful question to explore
and a worthy research objective.
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Table 2: Candidate factor models.

Category Example risk factor Reference Abbreviation

Market Market risk premium Sharpe (1964) CAPM

Accounting Size premium Fama and French (1993) FF3
Accounting Value premium Asness and Frazzini (2013) AF
Accounting Profitability premium Novy-Marx (2013) NM
Accounting Investment premium Fama and French (2015) FF5
Accounting Quality premium Asness et al. (2019) AFP

Liquidity Aggregate market liquidity Pástor and Stambaugh (2003) PS
Liquidity Zero-volume trading days Liu (2006) LIU

Momentum Momentum Carhart (1997) CAR
Momentum Modified value premium Asness et al. (2013) AMP
Momentum Trend Han et al. (2016) HZZ

Intermediary Intermediary capital ratio He et al. (2017) HKM

Mispricing Firm management mispricing Stambaugh and Yuan (2017) SY

Behavioral Post earnings anomalies Daniel et al. (2020) DHS

Tables 3 and 4 show the results of the MCS procedure for the sup t and the T 2 statistics,

for in- and out-of-sample tests. A MCS p-value greater than 5% indicates inclusion in the

95% model confidence set, which is denoted by the grey shading.

For in-sample tests, superior models are generally easier to distinguish with the T 2

statistic than with the supremum t statistic. When using the sup t statistic, seven candidate

models remain with the industry portfolios, and five remain with the size-sorted portfolios.

In contrast, when using the T 2 statistic, five models remain for the 12-industry portfolios,

and only one candidate model remains for both the size-sorted and the 49-industry port-

folios: the Fama and French (2015) five-factor model. The “last” remaining model - the

model with the largest MCS p-value - is always the same, regardless of the statistic: the

Fama and French (2015) five-factor model, for all types of portfolios considered.

The use of the 25 size- and B/M-sorted portfolios as test portfolios has been the subject

of scrutiny, due to their strong correlation with the size and the value factors; see Lewellen

et al. (2010). Following the recommendations in the literature, I also include 12 and 49

industry-sorted portfolios in my analysis. The results are surprising. First, the MCS under
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Table 3: MCS p-values for the candidate factor models, using the quadratic loss function, for
in-sample and out-of-sample tests, at the monthly frequency from July 1972 to June 2013. For
out-of-sample tests, the horizon h is 12, 24, and 60 months. R12IND, and RME/BEME denote
the portfolio returns for 12 industry-sorted portfolios, and 25 size- and book-to-market-sorted
portfolios, respectively. Shading denotes the inclusion in the 95% MCS. The block bootstrap
length is l = 12 months. The number of bootstrap iterations is set to B = 1,000.

In-sample Out-of-sample

07/1972 - 06/2013 h = 12 h = 24 h = 60

Model sup t T 2 sup t T 2 sup t T 2 sup t T 2

R12IND CAPM 0.0340 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
FF3 0.1620 0.4090 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
CAR 0.1620 0.0640 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
PS 0.1620 0.4090 0.0000 0.0000 1.0000 1.0000 0.0050 0.0000
FF5 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0050 0.0000
HKM 0.0340 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
AF 0.1620 0.0020 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000
NM 0.0340 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
HZZ 0.0340 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
SY 0.1620 0.0020 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
LIU 0.0460 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
DHS 0.0460 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
AMP 0.0460 0.0000 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
AFP 0.1620 0.0640 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000

RME/BEME CAPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FF3 0.4960 0.0040 0.0000 0.0000 0.0000 0.0000 0.0150 0.0000
CAR 0.4960 0.0040 0.0000 0.0000 0.0000 0.0000 0.0150 0.0000
PS 0.4960 0.0040 0.0000 0.0000 0.0000 0.0000 0.0050 0.0000
FF5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
HKM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AF 0.0080 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HZZ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LIU 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DHS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AMP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AFP 0.4960 0.0040 0.0000 0.0000 0.0000 0.0000 0.0150 0.0000
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Table 4: MCS p-values for the candidate factor models, using the quadratic loss function, for
in-sample and out-of-sample tests, at the monthly frequency from July 1972 to June 2013. For
out-of-sample tests, the horizon h is 12, 24, and 60 months. R49IND denotes the portfolio returns
for 49 industry-sorted portfolios. Shading denotes the inclusion in the 95% MCS. The block
bootstrap length is l = 12 months. The number of bootstrap iterations is set to B = 1,000.

In-sample Out-of-sample

07/1972 - 06/2013 h = 12 h = 24 h = 60

Model sup t T 2 sup t T 2 sup t T 2 sup t T 2

R49IND CAPM 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FF3 0.3600 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000
CAR 0.3600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PS 0.3600 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000
FF5 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HKM 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AF 0.3230 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
NM 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
HZZ 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SY 0.3600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0150 0.0000
LIU 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DHS 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AMP 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AFP 0.3600 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

the size and B/M portfolios and the industry portfolios are extremely similar with the sup

t statistic: the MCS always includes the Fama and French (1993), Carhart (1997), Pástor

and Stambaugh (2003), Fama and French (2015), Asness et al. (2019) models. In addition,

when using the industry portfolios as test portfolios, the MCS also includes the Asness and

Frazzini (2013) and Stambaugh and Yuan (2017) models. The recent work by Barillas and

Shanken (2017, 2018) argues that with the assumption of factor tradability, the test assets

become irrelevant to the analysis. This assumption, however, is not imposed in the MCS

framework.

These two models are the only models that include the size factor without the B/M

factor. Note that the Asness and Frazzini (2013) contains a modified B/M factor, albeit

it does not explain the variation in the size and B/M returns sufficiently well to warrant

inclusion in the MCS. Second, only models containing the size factor are included in the

MCS when using industry portfolios. Even models that exclude the market factor (Pástor

25



and Stambaugh (2003)) or the B/M factor are selected by the MCS procedure, as long as

they contain the size factor. Third, the groundbreaking capital asset pricing model (CAPM)

of Sharpe (1964) is never included in the MCS. While empirical evidence on the usefulness

of the market factor is mixed, the MCS results complement the recent approach of Harvey

and Liu (2021) in the following sense. Using a bootstrap approach to control for multiple

testing, they find that the theoretically-grounded market factor is the single most dominant

factor, using individual stocks instead of portfolios as test assets. This paper comes to a

similar conclusion, albeit when the market factor is combined with other pertinent risk

factors. With the exception of the Pástor and Stambaugh (2003), all considered candidate

models that are included in the MCS contain the market factor, suggesting that both the

market factor and additional factors are relevant, nevertheless the market factor alone is

insufficient.

The picture becomes clearer in out-of-sample results: the MCS contains only one model

for both statistics. The selected model depends (i) on the test portfolios; and (ii) on the

forecasting horizon, but both statistics always select the same model.

With respect to the choice of the sup t or the T 2 statistic, each statistic offers different

insights. While both of them account for correlation via the bootstrap procedure, as shown

in Harvey and Liu (2021), the sup t statistic selects the portfolio whose t statistic rejects

the null of equal predictability the most, whereas the T 2 statistic averages out and weighs

the squared means, according to the elements in the covariance matrix Σij. For instance,

for the Asness and Frazzini (2013) and Stambaugh and Yuan (2017) models, the largest

statistics across portfolios are sufficiently large to reject H0,M with 12-industry portfolios,

but fail to reject H0,M when considering all the portfolios jointly, leading to both models

being excluded from the MCS when using the T 2 statistic. Different model inclusions in

the MCS can be explained by power differences for varying within- and between-model

correlations, as seen in the simulation results. When the within-model correlation ρ is
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small, the test using the T 2 statistic is more powerful than with the sup t statistic.

Temporal instabilities in the estimated coefficients are a well-documented fact in the

context of beta pricing models. To address these concerns, I divide the original sample

period into 10-year sub-periods so that the variation in the coefficients is small enough

to offer short-term stability.8 The results of in-sample tests for the four sub-periods are

available in the Supplementary Material. Using the sup t statistic, the Fama and French

(2015) model dominates the 1992 to 2002 period for the industry portfolios. The results

for other time periods are a testimony of the temporal instabilities, as no single model

stands out. Moreover, for the period surrounding the 2007-2008 financial crisis, it becomes

difficult to distinguish the models: between five and 14 models are selected in the MCS.

Using the Hotelling T 2 statistic, the results are clear-cut. At most one model remains for

every period, and the Fama and French (2015) model emerges as the winner in most time

periods and most portfolio types. Notably, the Carhart (1997) and the Stambaugh and

Yuan (2017) are also occasionally selected. The behavioral model of Daniel et al. (2020) is

always excluded, although this exclusion does not imply a rejection of all behavior-based

models. The MCS results do not necessarily favour more parsimonious models, despite

evidence to the contrary in recent work; see Bryzgalova et al. (2023).

5 Conclusion

This paper provides a multivariate extension of the model confidence set procedure origi-

nally proposed by Hansen et al. (2011) for univariate models, and proposes two statistics

to test equal predictive ability: a supremum-type t statistic and a Hotelling-type T 2 statis-

tic. Both statistics summarize the information contained in the systems of equations to

test equal predictive ability. The extensive simulation study showcases the asymptotic size

8See Fama and MacBeth (1973), Roll and Ross (1980), and Gibbons (1982) on the use of short time
periods and Gagliardini et al. (2016) for an alternative approach via a time-varying parameter model.
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and power properties of the procedure. The procedure is adequately sized, even in small

samples. In many cases, the desired coverage probability is achieved in samples as small as

T = 500, and the procedure can eliminate all inferior models around T = 800 when there

are a large number of good models. Simulations also show that one of the key properties

of the MCS procedure, namely that the estimated MCS converges to the true MCS in

probability when the latter is a singleton, holds true in the multivariate case.

The empirical analysis answers several outstanding questions with regards to the factor

proliferation problems encountered in asset pricing. Namely, how do models featuring re-

cently discovered factors compare, and does a particular model stand out? I apply the MCS

procedure to a set of 14 candidate models and I find that the prominent Fama and French

(2015) five-factor model is never included in the MCS for out-of-sample tests with the 49

industry portfolios. This finding is persistent for both the supremum t and the Hotelling

T 2 statistics. For in-sample predictions, the candidate models are often indistinguishable

in their capacity to explain expected returns under the supremum statistic. To address

concerns relating to temporal instabilities, the sample is divided into 10-year periods, and

the MCS is performed in-sample over four different periods. Although the selected models

change often, the Fama and French (2015) model is the only model selected for the 1992

to 2002 period for the industry portfolios.

A confidence set approach provides valuable insights and has significant strengths. First,

the candidate models do not need to follow a certain structure, e.g. with respect to nest-

ing or factor tradibility; second, a baseline model is not required; and third, the model

confidence set procedure allows models to be viewed as statistically equal. In the context

of beta pricing models, the model confidence set procedure also allows us to establish the

significance of models, as opposed to the marginal contributions of new factors.
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