
Simulation-Based Multiple Testing for

Many Non-Nested Multivariate Models

Lynda Khalaf∗ and Florian Richard†

December 10, 2020

Abstract

We propose a multivariate extension of exact specification tests for non-nested mod-

els. Our test is finite-sample exact under the assumption of Gaussian errors, and is

easily generalized to a multiple-model hypothesis via a combined alternative. We ob-

tain valid inference results using bootstrapped Monte Carlo p-values, even when the

distribution under the null hypothesis is intractable. We consider both Gaussian and

non-Gaussian error structures through bootstrapping, and we show that our test pos-

sesses good size and power properties via simulations. Finally, we present empirical

applications to asset pricing by testing benchmark factor models against single and

multiple alternatives.
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1 Introduction

In this paper, we propose multivariate extensions of exact specification tests for non-nested

models and an extension in the case of multiple non-nested alternatives. The test is exact in

finite samples when the errors follow a Gaussian distribution. Our test yields valid results

even when the design matrix does not have full column rank, and non-Gaussian models are

also considered via bootstrap methods. Our empirically relevant simulations demonstrate

that the test enjoys good size and power properties. Finally, in our empirical analysis, we

apply our multivariate test to the problem of factor model specification in asset pricing.

Model specification is a crucial aspect of applied research. Accurate specification allows

for correct inference about the distribution of the data generating process (DGP) under

study. In the case of non-nested models, where neither model can be expressed as a restricted

version of the other, univariate specification tests exists, but in the multivariate context, the

properties of these tests have generally been overlooked, particularly when testing against

many competing non-nested alternatives.1 Likelihood ratio-type tests from the nested model

specification testing literature are available, but they lead to unreliable inference.2

The seminal work by Cox (1961, 1962) pioneered model specification testing with a

likelihood ratio-based test. Despite applications of this test to non-nested models by Pesaran

(1974) and the generalisation to multivariate non-linear regression models by Pesaran and

Deaton (1978), its computational complexity makes it unpopular among econometricians. A

simpler approach is to use the results of Milliken and Graybill (1970), by augmenting the a

priori model with some possibly non-linear function of the expected value of the dependent

variable, via the principle of artificial nesting; see Hoel (1947). Prominent tests for non-

nested models which use this idea include Davidson and MacKinnon (1981)’s J test and

its multivariate counterpart discussed in Davidson and MacKinnon (1983).3 However, the

artificial term in the J test only depends on a projection of the competing regressors and

on the dependent variable. Moreover, McAleer (1981) suggests that the J test often leans

toward the model with the least amount of regressors. Considering that the J test overrejects

in finite samples, Fisher and McAleer (1981) proposes a modified J test, the JA test, whose

artificial term is a consistent estimate of the expected value of the dependent variable when

the alternative model generates the data, and corrects for the size distortion. This approach

complies with the framework of Milliken and Graybill (1970), following Atkinson (1970).

The JA test, however, is thought to generally lack power compared to the J test. Stewart

1Pesaran and Weeks (2001) provides a broad review of non-nested model testing.
2For model selection of non-nested hypotheses using the Kullback-Leibler Information Criterion, see

Vuong (1989).
3Variations of the J test are provided in Bernanke et al. (1988) and Hagemann (2012).
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(1997) presents multivariate generalisations of univariate specification tests (including the

JA test) by applying Rao (1951)’s F -test to a set of Berndt and Savin (1977)’s uniform mixed

linear (UML) restrictions. Yet, the small sample properties of these multivariate tests for

non-nested alternatives are left unexplored. Our paper makes several contributions to this

literature.

First, we provide an extension of the JA test to a multivariate setting, which is finite-

sample exact under normality, using a regularization approach. Our test statistic, computed

using UML restrictions, is asymptotically valid under weak conditions and invariant to the

parameterisation of the distribution’s covariance matrix, under the normality of the error

terms.4 The use of a pseudoinverse with this portmanteau test allows us to circumvent

the issue of design matrices that do not have full column rank, conceivably because of high

correlation between dependent variables used as regressors. Second, we draw attention to the

multivariate J test of Davidson and MacKinnon (1983), which requires regularization in finite

samples. We revisit this test with two important modifications: (i) a bootstrap procedure to

correct for size distortions, and (ii) a pseudoinverse to bypass regularization problems. All

bootstrap methods are corrected for the fact that the Moore-Penrose inverse is not necessarily

smooth. Our simulation study shows that our version of the multivariate J test does not

produce size distortions, in spite of not being an exact test in small samples. Third, we

generalize the multivariate JA test to allow for a formal comparison of a single model against

the union of multiple models without compounding type I errors. Motivated by this idea, our

test addresses the multiple-model inference problem via a compound alternative hypothesis,

suitable to big data applications. Fourth, we present an extensive and empirically relevant

simulation study, and consider designs with Gaussian errors, t-distributed errors with various

degrees of freedom, as well as a wild bootstrap with Rademacher errors. We present the

empirical size and power of our tests, for small and large sample sizes and varying number of

dependent variables. Finally, in our empirical section, the applications of our test address the

growing problem of model specification in the asset pricing literature. Harvey et al. (2016)

documents 316 factor models since 1964.5 Therefore, the problem of model specification in

asset pricing factor models arises naturally. We apply our methodology to several model

specifications, including the Fama and French (2015) five-factor model, and variations of

the Fama and French (1993) model, as in Pástor and Stambaugh (2003). In addition to

the models mentioned above, we examine models incorporating consumption and housing

risk factors. While factor selection procedures in asset pricing often make use of machine

learning techniques, we employ an inferential approach to this problem.6 In contrast with

4The proof of asymptotic validity will be provided in the next draft of this paper.
5Campbell Harvey and Yan Liu keep an updated list of factors at this link.
6See Feng et al. (2017), Kozak et al. (2019), Freyberger et al. (2017), Chen et al. (2019) and Gu et al.
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this strand of the literature, our procedure can result in rejecting or accepting all models

under study. An important motivation of our paper is that the majority of machine learning

methods are not designed for non-nested models specification testing. We make use of Monte

Carlo (MC) p-values, and test the Fama and French (2015) five-factor model against single

and multiple competing models. We find that the Fama and French (2015) and the Pástor

and Stambaugh (2003) models are misspecified for most time periods in our sample. Finally,

when testing the Fama and French (2015) model against multiple models, particularly against

consumption-based asset pricing models, we find that it is almost never rejected.

The paper is structured as follows. Section 2 develops the framework of multivariate

exact tests. Section 3 details the simulation study, for tests against both single and multiple

alternatives. Section 4 presents empirical results. Section 5 concludes the paper.

2 Econometric Framework

Consider the collection of competing multivariate regression models Y = fk(Xk; θk) + Uk,

where Y ⊂ RT×n is a vector of T observations for n endogenous variables, fk are (possibly

non-linear) functions, and Xk are (T ×Kk) matrices of exogenous variables, respectively, for

k = 0, . . . , K. This ordering is motivated by the fact that k = 0 will refer to the model the

null hypothesisH0. θk are vectors of unknown parameters associated with compact parameter

spaces Θk ⊂ RKk×n, and Uk are matrices of errors. Denote a given model Y = fk(Xk; θk)+Uk

as Mk, for some k. We make the following assumptions about the regressors and the

endogenous variables:

Assumption 1. The regressors Xk are non-stochastic for all k.

Assumption 2. The regressors Xk have full-column rank, so that rk(Xk) = Kk for all k.

Assumption 3. Uk follows an absolutely continuous distribution conditional on Xk, for all

k.

Assumption 4. T > K0 + n.

Assumption 1 is necessary for finite-sample validity but will later be relaxed to derive our

asymptotic results. An additional assumption about the distribution of endogenous variables

allows us to state the following Lemma. The proof is stated in Appendix A.1.

Lemma 2.1. Under assumption 3, Y has full-column rank with probability 1 conditional on

Xk.

(2020) for applications of machine learning algorithms to factor selection.
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Without loss of generality, letM0 be the null model andMk be the alternative models, for

k = 1, . . . , K. We desire to test the following hypotheses:

H0 : M0, vs. (2.1)

H1 :
K⋃
k=1

Mk. (2.2)

In the context of multivariate linear regression models, (2.1) and (2.2) can be written as:

H0 : Y = X0θ0 + U0, U0
i.i.d.∼ (0n×1,Σ0), vs. (2.3)

H1 : the union of models of the form Y = Xkθk + Uk, Uk
i.i.d.∼ (0n×1,Σk), (2.4)

where Σ0 and Σk denote the scale matrices of the distribution of the error terms, which

corresponds to the covariance matrices in the Gaussian and Student-t distributions. Consider

the case of non-nested regressors as in Vuong (1989): the regressors can be strictly non-

nested (
⋂K
k=0Xk = ∅) or overlapping (X0 ∩ Xk 6= ∅ with X0 6⊂ Xk and Xk ⊂ X0 for at

least one k ∈ {1, . . . , K}). In that sense, Xk contains at least a unique regressor for each k.

Consequently, no model can be expressed as a restricted version of the others. To circumvent

this problem, the principle of artificial nesting can be applied to construct a comprehensive

regression

Y = X0θ0(In −
K∑
k=1

Ak) +
K∑
k=1

XkθkAk + Ū , (2.5)

where Ū = (In −
∑K

k=1Ak)U0 +
∑K

k=1AkUk and Ak are (n × n) matrices. One can inter-

pret this comprehensive regression a weighted average of equations (2.3) and (2.4). Under

the null hypothesis, H0 : A1 = . . . = AK = 0n×n, and under the alternative hypothesis,

H1 : at least one Ak 6= 0n×n. This regression is non-linear in parameters through the term

X0θ0(In −
∑K

k=1Ak). An alternative specification which is linear and that can be easily

estimated via ordinary least squares (OLS) is

Y = X0θ0 +
K∑
k=1

XkθkAk + U. (2.6)

However, as pointed out by Davidson and MacKinnon (1981) and Fisher and McAleer (1981)

in the univariate case and single model case, it is impossible to identify θ0, . . . , θK as well as

A0, . . . , AK . Indeed,
∑K

k=0Kkn + Kn2 parameters need to be identified, but one can only
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identify up to
∑K

k=0Kkn parameters if the regressors are strictly non-nested, and even fewer

parameters if they have regressors in common. The regressors being uncorrelated with U

when H0 is true, the unknown quantities in (2.6) can be identified with consistent estimates

of the θk.
7 The OLS estimator of θk is given by θ̂k = X+

k Y , where X+
k is the Moore-Penrose

inverse of Xk. This substitution yields

Y = X0θ0 +
K∑
k=1

Xkθ̂kAk + U, (2.7)

which is equivalent to

Y = X0θ0 +
K∑
k=1

PXk
Y Ak + U, (2.8)

where PXk
= XkX

+
k is the orthogonal projection of Xk. This is the multivariate counterpart

of the artificial regression associated with Davidson and MacKinnon (1981)’s J test using

the Berndt and Savin (1977) framework. Under normality, PX0Y will be independent from U

and (weakly) exogenous otherwise, following Davidson and MacKinnon (1981) and Stewart

(1997). Taking in account the parameter restriction A1 = . . . = AK = 0n×n for the null

model, it is desirable to estimate the expected value of Y under the null hypothesis as

well. Such an estimate is given by the artificial term PXk
PX0Y , where PX0 = X0X

+
0 is the

orthogonal projection of X0. Then, the corresponding comprehensive model is consistent

with the procedure that Milliken and Graybill (1970) developed for univariate models, in

that the artificial term is some function of X0θ̂0:

Y = X0θ0 +
K∑
k=1

PXk
PX0Y Ak + U, (2.9)

or, if we define X̃ = [X0 PX1PX0Y . . . PXK
PX0Y ] and Π = [θ0 A1 . . . AK ]′:

Y = X̃Π + U, (2.10)

where X̃ and Π are (T×(K0+nK)) and ((K0+nK)×n), respectively. This is the multivariate

counterpart of Fisher and McAleer (1981)’s JA test given by Stewart (1997), again using the

Berndt and Savin (1977) restrictions. We assume the errors U have the following form:

Assumption 5. U = WJ ′

7See Atkinson (1970).
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where J is invertible, so Σ = JJ ′. W has a known distribution so that the joint distribution

of the rows of U is known up the unknown matrix J . In the multivariate Gaussian case,

each row of W follows an i.i.d. multivariate Gaussian distribution:

Assumption 6. Wt ∼ N(0n×1, In), t = 1, . . . , T .

We test the hypothesis:

H0 : A1 = . . . = AK = 0n×n. (2.11)

In the context of specification testing, to fully understand the meaning of a rejection of the

null hypothesis, and conversely, a failure to reject, it becomes evident that one should also

test the reverse of these hypotheses, as suggested by MacKinnon (1983). If A1 = . . . =

AK = 0n×n, we fail to reject H0 and the null model is the true model; however, a rejection

of H0 does not necessarily imply that the alternative model is the true model. Only after

testing the reverse of this hypothesis (with the null model in the alternative hypothesis and

vice versa) can one draw conclusions about H0 and H1. In the case that K = 1, there are 4

possible outcomes: both the null and the alternative models are misspecified; the null model

is misspecified and the alternative model is correctly specified; the null model is correctly

specified and the alternative model is misspecified; and both models are correctly specified.

The extension of this argument to multiple alternatives to raises a multiple comparison

problem addressed in Richard (2020). The hypothesis (2.11) can be tested via a set of UML

restrictions:

RΠC = L, (2.12)

where R = [0n×K0 In . . . In], which is of dimension (n × (K0 + nK)), C = In, L = 0n×n.

We focus on the widely-used Wilks (1938)’s lambda criterion (see Dufour and Khalaf (2002)

and references therein):

Λ = |Û ′Û |/|Û ′0Û0|, (2.13)

where Û ′Û and Û ′0Û0 are the unconstrained and constrained sum of squared errors (SSE),

respectively. In particular, Wilk’s lambda can be expressed as the product of the eigenvalues

λi:

Λ =
n∏
i=1

λi, (2.14)
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which in turn, are the roots of the determinantal equation

|Û ′Û − λÛ ′0Û0| = 0. (2.15)

where λ = (λ1, . . . , λn), with λ1 ≥ . . . ≥ λn. Furthermore, we can define the likelihood ratio

(LR) criterion as

LR = −T ln(Λ). (2.16)

Dufour and Khalaf (2002) show that, when X̃ has full-column rank, Wilk’s lambda is a

pivotal quantity. We generalize this result to the present case where X̃ is rank-deficient,

using the Moore-Penrose inverse. For the unconstrained model, the SSE is given by

Û ′Û = U ′M(X̃)U = JW ′M(X̃)WJ ′, (2.17)

where M(X̃) = IT − PX̃ is the residual maker matrix, and PX̃ = X̃X̃+. For the constrained

model, the SSE is

Û ′0Û0 = U ′M0U = JW ′M0WJ ′, (2.18)

where M0 = M(X̃)+X̃(X̃ ′X̃)+R′
[
R(X̃ ′X̃)+R′

]−1
RX̃+. We can condition on X̃ because X̃

is independent of U under normality. Outside of the Gaussian distribution, the asymptotic

case satisfies the regularity conditions of Andrews (1987). We can now state generalizations

of Theorem 3.1, Corollary 3.2 and 3.3 of Dufour and Khalaf (2002) using the Moore-Penrose

inverse.

Theorem 2.2. Under assumptions 1 to 6 and hypothesis (2.11), the eigenvalues λ1, . . . , λn

are distributed, conditional on X̃, like the roots of

|W ′M(X̃)W − λW ′M0W | = 0. (2.19)

Proof. Equation (2.15) can be written as

|JW ′M(X̃)WJ ′ − λJW ′M0WJ | = 0 (2.20)

|J ||W ′M(X̃)W − λW ′M0W ||J ′| = 0 (2.21)

|W ′M(X̃)W − λW ′M0W | = 0 (2.22)

which does not depend on J .
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Corollary 2.2.1. Under assumptions 1 to 6 and hypothesis (2.11), Λ is distributed like the

product of the roots of |W ′M(X̃)W − λW ′M0W | = 0.

Corollary 2.2.2. Under assumptions 1 to 6 and hypothesis (2.11), Λ follows the same

distribution as the ratio

|W ′M(X̃)W |/W ′M0W |. (2.23)

When the problem does not require regularization, i.e., when X̃ and the partition [PX1PX0Y . . . PXK
PX0Y ]

have full column rank, another available statistic to test (2.11) under UML restrictions is

the monotonic transformation of Λ due to Rao (1951):

F =
1− Λ1/τ

Λ1/τ

ρτ − 2λ

pq
(2.24)

where ρ = T − K0 − (p − q + 1)/2, λ = (pq − 2)/4, τ =
√

(p2q2 − 4)/(p2 + q2 − 5) when

p2 +q2−5 > 0 and 1 otherwise. q is the number of restrictions per equation. For non-integer

degrees of freedom, the degrees of freedom are rounded to the nearest integer.8 In our case,

p = q = n. Then, ρ = T − K0 − 1/2, λ = (n2 − 2)/4, and τ =
√

(n4 − 4)/(2n2 − 5).

For the special case where min{p, q} ≤ 2, Rao’s F statistic will follow an F -distribution

exactly. In the univariate case with exogenous regressors, Fisher and McAleer (1981) and

Godfrey (1983) have pointed out the JA test is exact under normality of the errors. Outside

of normality, X̃ and U will not be independent and the statistic will not be pivotal in finite

samples. We have not made any assumptions with regards to the inversion of X̃ ′X̃. Indeed,

there is no guarantee that the design matrix X̃ has full column rank, and in many cases X̃

is rank deficient. Under Assumption 4, the full-rank condition is rk(X̃) = min(T,KX +n) =

KX + n, which requires that min(rk(PZ), rk(PX), rk(Y )) − dimC (X) ∩ C (PZPXY ) = n.

This is equivalent to n < min(KZ , KX) and dimC (X)∩C (PZPXY ) = 0. Consequently, the

OLS estimator Π̂ = (X̃ ′X̃)−1X̃ ′Y may be difficult to compute using traditional methods.

Generalized inverses can be used for the purpose of regularization in linear models, as in

Milliken and Graybill (1970). For the same reason that has motivated the procedure of

Milliken and Graybill (1970), we can condition on X̃, and the statistic will be pivotal under

the normality assumption, following the argument of Dufour and Khalaf (2002), using (2.17)

and (2.18). It is straightforward to show that the Wilk statistic is invariant to J , hence

conditioning on X̃ provides pivotality, even when Π̂ is obtained via a pseudoinverse.

Davidson and MacKinnon (1983) develops a multivariate J test and presents the linear

case using generalized least squares (GLS). Let Ω̂X and Ω̂Z the variance-covariance matrices

8See Rao (1973), p. 556.
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of models (2.3) and (2.4). Define Q̂X = chol(Ω̂X) and Q̂Z = chol(Ω̂Z) as the Cholesky

decompositions of the variance-covariance matrices, and let f̂ = Xθ̂, ĝ = Zγ̂, and h =

Ω̂X(Ω̂Z)−1(ĝ−f̂)′. Then, define y = vec((Q̂X(Y −f̂)′)′) as the vectorization of the dependent

variable matrix. Denoting W̃ = [In ⊗ (Q̂X f̂
′)′ vec((Q̂Xh)′)], we can write the regression

succinctly as

y = W̃B + E, (2.25)

where B = [bv λ]′, and E denotes a stochastic error term. We desire to test the hypothesis

λ = 0 using a t-statistic. The GLS estimate of B is simply

B̂ = (W̃ ′W̃)−1W̃ ′y, (2.26)

and the residuals for equation (2.25) are

Ê = y − W̃B̂. (2.27)

The standard errors are then given by

S = ((Ê ′Ê)(W̃ ′W̃)−1)/(nT ). (2.28)

Let Se denote the bottom right elements of the (n2 + 1)× (n2 + 1) standard error matrix S.

The desired t-statistic is given by the ratio of the estimated λ̂ and the square root of Se

t =
λ̂√
Se
. (2.29)

We find through our simulation study that the matrix is almost singular in small samples

(T = 60). Thus, we also apply our regularization technique to the multivariate J test. In

our case, we use the Moore-Penrose inverse to compute the estimates of Π and Πc for the

JA test, and the estimate of B for the J test. In the context of the linear regression (2.10),

the Moore-Penrose inverse of X̃ ′X̃ is denoted (X̃ ′X̃)+. In the case that X̃ ′X̃ is invertible,

the Moore-Penrose inverse is simply the matrix inverse, so (X̃ ′X̃)+ = (X̃ ′X̃)−1. In addition

to the Moore-Penrose inverse, we use a Monte Carlo (MC) p-value method to obtain a

tractable simulated distribution under the null hypothesis, which is detailed in the following

subsection.
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2.1 Bootstrap Procedure

To obtain reliable inference results when applying the Moore-Penrose inverse, we perform

a parametric bootstrap which corresponds to a MC test with a consistent estimate of the

nuisance parameters, as in Dufour (2006). In particular, this method yields an exact test,

when the null distribution of the test statistic is shown to be pivotal, which occurs in our

case under normality for the multivariate JA test. The MC p-value procedure is as follows.

Let S0 denote the F statistic computed from the sample, called the observed statistic, and let

S1, . . . , SB denote B exchangeable replications of the observed statistic, called the simulated

statistics.9 The simulated statistics can be obtained via bootstrapping or simulations, so

that the null distributions of S0, S1, . . . , SB are identical. We use a parametric bootstrap

with the same parameterisation as S0 and a wild bootstrap. The following steps outline the

parametric bootstrap procedure:

1. Estimate the model parameters θ̂0 and Σ̂0 under H0.

2. Compute S0 under H0, using (2.24).

3. Draw U b from multivariate normal or multivariate t distributions with covariance Σ̂0.

4. Compute Yb = X0θ̂0 + U b.

5. Compute the simulated statistic Sb using Yb as in (2.24), conditioning on Xk, for

k = 1, . . . , K.

6. Repeat steps 3 through 5 B times to obtain the simulated statistics S1, . . . , SB.

We consider errors drawn from a multivariate Gaussian distribution N(0n×1, Σ̂0), as well as

multivariate Student-t errors with 5 degrees of freedom. We generate the Student-t errors

as follows:

t =
Z1

(Z2/κ)1/2
, (2.30)

where Z1 follows a multivariate Gaussian distribution parameterised like above, and Z2

follows a chi-squared distribution with κ degrees of freedom. In the Gaussian case, pivotality

implies that the test will be exact. The asymptotic validity of this method beyond the

Gaussian case depends on the fact that the statistic is asymptotically pivotal; see Dufour

(2006) and Davidson and MacKinnon (2002) and references therein. We also apply the

9A sequence of random variables is exchangeable if all permutations of that sequence have the same joint
distribution as the original sequence; see de Finetti’s representation theorem.
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approach of Davidson and Flachaire (2008) to perform a multivariate wild bootstrap. The

wild bootstrap allows the errors to exhibit heteroskedasticity. The wild bootstrap procedure

is as follows:

1. Estimate the model parameters θ̂0 and Σ̂0 under H0.

2. Compute S0 under H0, using (2.24).

3. Draw a T × 1 vector of random variables ε such that E(ε) = 0 and E(ε2) = 1.

4. For each row Ût of Û , compute h(Ût), where h(.) is some transformation of Ût.

5. For t = 1, . . . , T , the bootstrap disturbances are U∗t = h(Ût) ◦ εt, where ◦ denotes the

Hadamard product.

6. Compute Y ∗b = Xθ̂ + U∗.

7. Compute the simulated statistic Sb using Y ∗b as in (2.24), conditioning on X and Z.

8. Repeat steps 3 through 7 B times to obtain the simulated statistics S1, . . . , SB.

For εt, we draw from a Rademacher distribution, where εt takes on values 1 and −1 with

probability 0.5, and we set h(Ût) = Ût.

Following the framework of Dufour (2006), under the assumption that P (S0 = Sb) 6= 0

for all b = 1, . . . , B, we draw B + 1 random variables Z̃0, Z̃1, . . . , Z̃B that follow a uniform

distribution, independent from S0, S1, . . . , SB. The statistics are not automatically contin-

uous, as the Moore-Penrose inverse is not always smooth. A smooth regularization is not

a necessity as the MC p-value procedure allows for discrete statistics. (S0, S1, . . . , SB) and

(Z̃0, Z̃1, . . . , Z̃B) are then organised in pairs according to a lexicographic order:

(Sb, Z̃b) ≥ (Sc, Z̃c)⇔ [Sb > Sc or (Sb = Sc and Z̃b ≥ Z̃c)], (2.31)

for all b, c = 1, . . . , B. The uniform random variables (Z̃0, Z̃1, . . . , Z̃B) serve the purpose of

breaking the tie when Sb = Sc. This yields the MC p-value:

p̃B(x) =
BG̃B(x) + 1

B + 1
, where (2.32)

G̃B(x) = 1− 1

B

B∑
b=1

1[0,∞)(x− Sb) +
1

B

B∑
b=1

1[0](Sb − x)1[0,∞)(Z̃b − Z̃0). (2.33)
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As long as α(B + 1) is an integer, the test will have level α:

P [p̃B(S0) ≤ α] =
I [α(B + 1)]

B + 1
, for 0 ≤ α ≤ 1, (2.34)

where I [·] denotes the integer part.

3 Simulation Study

We present the results of an empirically-relevant simulation study. Each model is calibrated

using the estimated parameters of asset pricing models that have received significant support

in the literature. The test depends on the value of the regressors Xk, as well as on the

multidimensional distribution parameters Σk. For non-nested tests, size and power depend

on the distance between models, the regressors Xk, and multidimensional parameters, θk

and Σk. We have chosen to vary Xk as a function of observations. As it is not obvious to

track the effects of these changes on power, we change the sample size T and the number

of test portfolios n, which are described below. To remain empirically relevant, we simulate

the models based on the regressors and observed values of the considered models. Power will

change with the Kullback-Leibler distance, and variations in our set of empirically relevant

choices provide a substitute for the usual power curves.10 We compute the Kullback-Leibler

divergence as

DKL(Pθk , Pθ0) =
T

2
log
(

Σ̂0/Σ̂k

)
−n

2
+

1

2
tr
(

Σ̂−10 Σ̂k

)
+

1

2
tr

(
Σ̂−10

(
Xkθ̂k −X0θ̂0

)′ (
Xkθ̂k −X0θ̂0

))
,

where Pθk and Pθ0 denote the distributions under the alternative and the null models, re-

spectively.

We repeat the MC p-value procedure for our size and power calculations, using a para-

metric bootstrap and a wild bootstrap. For the parametric bootstrap, we consider both

Gaussian errors and Student-t errors with 5 degrees of freedom, generated as in (2.30). For

the wild bootstrap, we consider a Rademacher distribution. We consider both the full sample

period, as well as 5 and 10 year subsamples. We perform 10,000 simulations for each MC

p-value procedure, and we set B equal to 999 replications. We use a nominal significance

level of α = 0.05.

10For a treatment of the interpretation of the Kullback-Leibler divergence in a Neyman-Pearson framework,
see Eguchi and Copas (2006).
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3.1 Data Description

We use the research portfolio monthly returns available on Professor French’s website as

dependent variables, Rit.
11 The return series fare value-weighted monthly portfolio returns

of U.S. stocks on the New York Stock Exchange (NYSE), the American Stock Exchange

(AMEX), and the NASDAQ Stock Market. Portfolios are rebalanced each June and are

sorted by characteristics. We perform our analysis for the market equity (size) portfolios

(n = 18), the size and book value portfolios (n = 25), and the industry portfolios (n = 5

and n = 12), as suggested by Lewellen et al. (2010). The portfolios formed on size are

sorted according to the firm’s market equity value, and the portfolios formed on size and

book value-to-market are the intersection of portfolios sorted according to the firm’s market

equity value and book value-to-market equity ratio. For both the size portfolios, we use the

lowest 30%, the middle 40%, and the top 40% portfolios returns, along with the quintile and

the decile portfolios returns. For the size and book portfolios, we use the NYSE quintiles.

The industry portfolios are sorted according to the industry that the issuing firm falls under,

for n = 5 (consumer goods, manufacturing, business equipment, healthcare, and others)

and n = 12 (consumer nondurables, consumer durables, manufacturing, energy, chemicals,

business equipment, telecommunications, utilities, wholesale and retail, healthcare, financial

services, and others). The portfolio return data spans a period from January 1968 to August

2018.

For the independent variables, we use risk factors from the asset pricing literature. Factor

models attempt to explain variation in asset returns from variation in economic variables,

called risk factors. Such economic variables includes returns of (possibly non-traded) factors,

macroeconomic quantities (Chen et al. (1986) and Shanken and Weinstein (2006)), and even

behavioral factors (Daniel et al. (2019)). Factors can be created from non-tradable assets

via a two-pass regression procedure (see Fama and MacBeth (1973)). The Fama and French

(2015) model is represented by the following regression:

Rit = αi + β1i(rmt − rft) + β2iSMBt + β3iHMLt + β4iRMWt + β5iCMAt + eit (FF5)

where Rit = rit− rft denotes the excess return of the test portfolio i over the risk-free return

rft in period t, and rmt− rft denotes the market risk premium, i.e., the excess of the market

portfolio rmt over the risk-free rate. The FF5 risk factors are the SMB (Small Minus Big)

factor, the HML (High Minus Low) factor, the RMW (Robust Minus Weak) factor, and the

11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research

14

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research


CMA (Conservative Minus Aggressive) factor. They are computed as follows:

SMB = (Small Value + Small Neutral + Small Growth)/3

− (Big Value + Big Neutral + Big Growth)/3

HML = (Small Value + Big Value)/2− (Small Growth + Big Growth)/2

RMW = (Small Robust + Big Robust)/2− (Small Weak + Big Weak)/2

CMA = (Small Conservative + Big Conservative)/2− (Small Aggressive + Big Aggressive)/2

where “Small” and “Big” denote the stocks of firms with small and large market capitaliza-

tion, “Value” and “Growth” denote stocks with high book value-to-price (B/P) ratio and

stocks with low B/P ratio, “Robust” and “Weak” denote the stocks of firms with high and

low profitability, and “Conservative” and “Aggressive” denotes the stocks of firms that in-

vest conservatively and aggressively. We test the Pástor and Stambaugh (2003), Lettau and

Ludvigson (2001), and Lustig and Van Nieuwerburgh (2005) models against the FF5 model,

either individually or jointly:

Rit = αi + β1i(rmt − rft) + β2iSMBt + β3iHMLt + β4iLt + εit (PS)

Rit = αi + β1icayt + β2i∆ct + β3icayt ×∆ct + εit (LL)

Rit = αi + β1imyt + β2i∆ct + β3imyt ×∆ct + εit (LvN)

L is the Pástor and Stambaugh (2003) liquidity factor. For a given day d in month t, the

liquidity factor is formed by regressing the next day’s market excess return rei,d+1,t on the

signed volume and the portfolio return for that given day ri,d,t: r
e
i,d+1,t = θi,t + φi,tri,d,t +

γi,tsign(rei,d,t) · vi,d,t + εi,d+1,t. The estimated coefficient on the signed volume is expected to

be negative when liquidity is low. This represents the effect of returns reversals induced by

trading volumes at the security level. The first difference of the estimated coefficient for

each period is then scaled by an estimate of liquidity cost (mt/m1) and averaged over the

number of stocks Nt: ∆γ̂t = (mt/m1)
∑Nt

i=1(γ̂i,t − γ̂i,t−1)/Nt. The resulting measure is then

regressed on its own lag and the liquidity cost: ∆γ̂t = a + b∆γ̂t−1 + c(mt−1/mt)γ̂t + ut.

The liquidity factor is the residual from this regression, divided by 100: L = ût/100. cay is

the consumption-to-wealth ratio from the Lettau and Ludvigson (2001) consumption capital

asset pricing model (C-CAPM), and ∆c is the log consumption growth. cay is estimated as

ĉayt = ct − β̂aat − β̂yyt, where c is consumption, a is asset wealth, and y is labor income.

my is the housing collateral ratio from Lustig and Van Nieuwerburgh (2005). It is computed

as myt = log(hvt) + ˆ̄ω log(yt) + v̂t+ χ̂, hvt is the per household real estate wealth, yt is the

labor income plus transfers, v̂t accounts for a time trend, and χ̂ is a constant.
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The factor returns are monthly for the Fama and French (2015), and Pástor and Stam-

baugh (2003) models, from January 1968 to August 2018 (T = 608), and quarterly for the

Lettau and Ludvigson (2001) and Lustig and Van Nieuwerburgh (2005) models, from Q1

1968 to Q1 2005 (T = 149). When testing the Fama and French (2015) model against

multiple alternatives, we compute the quarterly returns by compounding monthly returns.

3.2 Simulation Design

Experiments I, II, and III explore testing against the alternative hypothesis of a single model,

while experiments IV and V consider the multiple testing aspect of our method. Experi-

ment VI offers a finite-sample comparison between the multivariate J test from Davidson

and MacKinnon (1983) (DM1983) using equation (2.29), the multivariate extension of the

univariate J test with Berndt and Savin (1977) restrictions (DMBS), using equation (2.8),

and the multivariate JA test (JABS), using equation (2.9).

• Experiment I : Fama and French (2015) vs. Pástor and Stambaugh (2003).

Hypothesis: H0 : A = 0n×n.

DGP for empirical size: Fama and French (2015) model.

DGP for empirical power: Pástor and Stambaugh (2003) model.

Test: JABS.

• Experiment II: Fama and French (2015) vs. Lettau and Ludvigson (2001).

Hypothesis: H0 : A = 0n×n.

DGP for empirical size: Fama and French (2015) model.

DGP for empirical power: Lettau and Ludvigson (2001) model.

Test: JABS.

• Experiment III: Fama and French (2015) vs. Lustig and Van Nieuwerburgh (2005).

Hypothesis: H0 : A = 0n×n.

DGP for empirical size: Fama and French (2015) model.

DGP for empirical power: Lustig and Van Nieuwerburgh (2005) model.

Test: JABS.

• Experiment IV: Fama and French (2015) vs. Pástor and Stambaugh (2003), Lettau

and Ludvigson (2001), and Lustig and Van Nieuwerburgh (2005).
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Hypothesis: H0 : A1 = A2 = A3 = 0n×n.

DGP for empirical size: Fama and French (2015) model.

DGP for empirical power: We generate the data from the estimation of each of the

3 alternative models.

Test: JABS.

• Experiment V: Fama and French (2015) vs. Lettau and Ludvigson (2001) and Lustig

and Van Nieuwerburgh (2005).

Hypothesis: H0 : A1 = A2 = 0n×n.

DGP for empirical size: Fama and French (2015) model.

DGP for empirical power: We generate the data from the estimation of each of the

2 alternative models.

Test: JABS.

• Experiment VI: Fama and French (2015) vs. Pástor and Stambaugh (2003).

Hypothesis: H0 : A = 0n×n.

DGP for empirical size: Fama and French (2015) model.

DGP for empirical power: Pástor and Stambaugh (2003) model.

Test: DM1983, DMBS, JABS.

3.3 Discussion of Simulation Results

The results of experiment I show that the multivariate JA test exhibits appropriate size

for the Gaussian case. Additionally, using a thick-tailed distribution such at a Student-t

distribution with 5 degrees of freedom, does not create size distortions. A larger number

of test portfolios does not to affect empirical size, as the test remains correctly sized as n

increases. With a wild bootstrap, size is still close to the nominal level, but the test slightly

overrejects in the 68-78 period. Power is generally close to 1 and increases with the number

of portfolios, n. Power significantly lowers during the 1988 to 1998 period, which is explained

by the fact that the distance between the alternative and the null models is small, as shown in

Table 2. The period from 1998Q1 to 2005Q1 is not shown in subsequent tables, as it violates

Assumption 4 that T > K0 + n. Table 3 shows the simulation results of testing the Fama

and French (2015) model against the Lettau and Ludvigson (2001) C-CAPM. Even with a

small sample size (T = 29) because of the quarterly frequency, the test remains properly
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sized with Gaussian and t(5) errors, but overrejects when using a wild bootstrap, providing

support for the former distributional assumptions. For the 5-industry portfolios, periods of

lower power (1978Q1 - 1987Q4) again stem from the proximity between the distributions

(DKL = 22.49).

Tables 7 through 16 show that even when testing the null hypothesis against the com-

pound alternative of multiple models, size is still controlled for Gaussian and t(5) errors,

and overrejects with the Wild bootstrap, providing further support for the assumption of

Gaussian and t(5) errors. Power is satisfactory for the Gaussian and t(5) cases, and increases

with n. When performing a wild bootstrap, however, power is generally lower than under

Gaussian and t(5) distributions.

Additionally, Table 17 presents empirical size and power for the DM1983, the DMBS,

and the JABS tests, for a design where sample size is small (T = 60) and the number of

dependent variables is large (n = 25). While the J test is not exact in small samples, we do

not observe size distortions, and the deviation from 5% is negligible. This finding is generally

due to the use of bootstrap methods.12 In fact, the test appears to reject the null hypothesis

closer to the nominal significance level when n increases. All 3 tests are adequately sized in

small samples. The DM1983 test dominates marginally the DMBS and JABS, whose power

is identical.

12The use of bootstrap methods with the J test is discussed at length in Davidson and MacKinnon (2002).
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Table 1: Experiment I: Fama and French (2015) vs. Pástor and Stambaugh (2003). Empirical
size and power for the parametric bootstrap with Gaussian and t(5) errors, and the wild
bootstrap with a Rademacher distribution.

Empirical size Empirical power

Industry Size Size & Book Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

T Gaussian errors

68 - 18 0.0464 0.0475 0.0481 0.0457 0.9945 0.9998 0.9999 0.9916
68 - 78 0.0541 0.0536 0.0525 0.0527 1.0000 1.0000 0.9935 0.9957
78 - 88 0.0510 0.0505 0.0487 0.0493 0.8770 0.9554 0.9838 0.9460
88 - 98 0.0505 0.0512 0.0496 0.0501 0.3823 0.6418 0.6938 0.8240
98 - 08 0.0529 0.0567 0.0490 0.0548 0.9762 0.9832 0.9935 0.9921
08 - 18 0.0506 0.0515 0.0515 0.0507 0.9995 0.9960 0.9930 0.9903

t(5) errors

68 - 18 0.0567 0.0553 0.0515 0.0536 0.9864 0.9910 0.9845 0.8918
68 - 78 0.0534 0.0538 0.0517 0.0526 0.9974 1.0000 0.9207 0.9513
78 - 88 0.0495 0.0502 0.0492 0.0465 0.6754 0.8055 0.8878 0.8128
88 - 98 0.0486 0.0487 0.0524 0.0479 0.2538 0.4412 0.4941 0.6267
98 - 08 0.0468 0.0468 0.0458 0.0490 0.8424 0.8760 0.9224 0.9328
08 - 18 0.0486 0.0497 0.0548 0.0507 0.9760 0.9417 0.9310 0.9176

Wild bootstrap

68 - 18 0.0531 0.0554 0.0529 0.0535 0.9884 0.9969 0.9899 0.9309
68 - 78 0.0645 0.0644 0.0671 0.0632 1.0000 1.0000 0.9406 0.9799
78 - 88 0.0497 0.0524 0.0467 0.0518 0.7553 0.8880 0.9546 0.8598
88 - 98 0.0526 0.0515 0.0487 0.0544 0.3579 0.5689 0.6015 0.7027
98 - 08 0.0578 0.0556 0.0534 0.0528 0.9330 0.9303 0.9751 0.9456
08 - 18 0.0550 0.0612 0.0594 0.0667 0.9984 0.9806 0.9401 0.8335
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Table 2: Experiment I: Kullback-Leibler distance between the distribution of errors of the
Pástor and Stambaugh (2003) and Fama and French (2015) models, assuming a Gaussian
distribution, and the pseudo Kullback-Leibler distance for a Student-t(5) distribution ob-
tained via simulation, and using a Wild bootstrap with a Rademacher distribution obtained
via simulation.

Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25

T Gaussian distribution

68 - 18 123.27 131.55 67.16 114.95
68 - 78 44.62 70.33 50.73 59.79
78 - 88 19.01 38.38 52.45 39.90
88 - 98 9.12 33.41 25.67 35.67
98 - 08 25.83 39.67 51.26 65.18
08 - 18 44.72 65.87 54.52 65.42

t(5) distribution

68 - 18 20.56 23.74 18.76 8.41
68 - 78 30.52 41.60 9.00 6.22
78 - 88 5.18 5.59 5.73 3.19
88 - 98 -1.47 -3.61 -6.68 -5.94
98 - 08 9.62 8.51 9.09 11.00
08 - 18 18.59 13.43 10.27 9.53

Wild bootstrap

68 - 18 24.48 26.44 14.55 3.46
68 - 78 44.49 53.13 12.17 4.13
78 - 88 9.60 10.91 8.43 5.22
88 - 98 -2.83 -5.65 -8.80 -5.17
98 - 08 14.23 9.28 11.11 10.33
08 - 18 27.38 18.94 15.03 11.89
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Table 3: Experiment II: Fama and French (2015) vs. Lettau and Ludvigson (2001). Empirical
size and power for the parametric bootstrap with Gaussian and t(5) errors, and the wild
bootstrap with a Rademacher distribution.

Empirical size Empirical power

Industry Size Size & Book Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

T Gaussian errors

1968Q1 - 2005Q1 0.0512 0.0492 0.0483 0.0488 0.8694 0.9953 0.9927 0.9991
1968Q1 - 1977Q4 0.0529 0.0513 0.0493 0.0490 0.7042 0.9704 0.9991 0.9952
1978Q1 - 1987Q4 0.0531 0.0510 0.0555 0.0541 0.3966 0.8108 0.9949 1.0000
1988Q1 - 1997Q4 0.0499 0.0512 0.0516 0.0537 0.6436 0.9197 0.9993 0.9996

t(5) errors

1968Q1 - 2005Q1 0.0520 0.0451 0.0469 0.0464 0.6030 0.8908 0.8893 0.9621
1968Q1 - 1977Q4 0.0525 0.0500 0.0483 0.0507 0.4803 0.8625 0.9811 0.9776
1978Q1 - 1987Q4 0.0510 0.0498 0.0515 0.0513 0.2297 0.5647 0.9492 0.9971
1988Q1 - 1997Q4 0.0493 0.0502 0.0526 0.0504 0.3920 0.7173 0.9797 0.9893

Wild bootstrap

1968Q1 - 2005Q1 0.0561 0.0556 0.0613 0.0566 0.8056 0.9842 0.9670 0.9869
1968Q1 - 1977Q4 0.0614 0.0597 0.0760 0.0737 0.6984 0.8717 0.9399 0.7353
1978Q1 - 1987Q4 0.0519 0.0465 0.0512 0.0448 0.2268 0.4973 0.6921 0.8033
1988Q1 - 1997Q4 0.0521 0.1109 0.0877 0.0898 0.5326 0.7833 0.9586 0.8573
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Table 4: Experiment II: Kullback-Leibler distance between the distribution of errors of the
Lettau and Ludvigson (2001) and Fama and French (2015) models, assuming a Gaussian
distribution, and the pseudo Kullback-Leibler distance for a Student-t(5) distribution ob-
tained via simulation, and using a Wild bootstrap with a Rademacher distribution obtained
via simulation.

Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25

T Gaussian distribution

1968Q1 - 2005Q1 42.34 88.08 142.54 199.84
1968Q1 - 1977Q4 31.77 83.38 154.40 239.39
1978Q1 - 1987Q4 22.49 71.77 143.91 310.15
1988Q1 - 1997Q4 23.36 85.64 130.40 287.27

t(5) distribution

1968Q1 - 2005Q1 3.71 10.09 3.66 7.26
1968Q1 - 1977Q4 2.05 10.49 27.75 26.94
1978Q1 - 1987Q4 -3.31 -1.68 21.90 62.31
1988Q1 - 1997Q4 0.98 5.40 29.89 42.45

Wild bootstrap

1968Q1 - 2005Q1 2.75 -11.04 -28.43 -9.68
1968Q1 - 1977Q4 -2.40 -20.70 -66.07 -185.09
1978Q1 - 1987Q4 -2.62 14.62 -79.36 -75.40
1988Q1 - 1997Q4 12.62 -21.41 29.24 -34.26
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Table 5: Experiment III: Fama and French (2015) vs. Lustig and Van Nieuwerburgh (2005).
Empirical size and power for the parametric bootstrap with Gaussian and t(5) errors, and
the wild bootstrap with a Rademacher distribution.

Empirical size Empirical power

Industry Size Size & Book Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

T Gaussian errors

1968Q1 - 2005Q1 0.0492 0.0480 0.0503 0.0488 0.7809 0.9774 0.9968 0.9977
1968Q1 - 1977Q4 0.0527 0.0517 0.0521 0.0482 0.8706 0.9961 1.0000 0.9997
1978Q1 - 1987Q4 0.0491 0.0521 0.0506 0.0507 0.5879 0.8745 0.9962 0.9741
1988Q1 - 1997Q4 0.0500 0.0491 0.0531 0.0525 0.4979 0.8998 0.9859 0.9930

t(5) errors

1968Q1 - 2005Q1 0.0522 0.0495 0.0498 0.0510 0.4973 0.7996 0.9220 0.9268
1968Q1 - 1977Q4 0.0529 0.0523 0.0526 0.0525 0.6280 0.9397 0.9990 0.9935
1978Q1 - 1987Q4 0.0496 0.0473 0.0456 0.0474 0.3685 0.6773 0.9607 0.9239
1988Q1 - 1997Q4 0.0505 0.0542 0.0536 0.0535 0.3036 0.7061 0.9115 0.9613

Wild bootstrap

1968Q1 - 2005Q1 0.0603 0.0600 0.0556 0.0543 0.7097 0.9399 0.9751 0.9807
1968Q1 - 1977Q4 0.0562 0.0559 0.0711 0.0718 0.8035 0.9617 0.9632 0.6646
1978Q1 - 1987Q4 0.0389 0.0469 0.0572 0.0462 0.5297 0.6735 0.7587 0.4584
1988Q1 - 1997Q4 0.0599 0.0892 0.1102 0.0998 0.4677 0.7599 0.8146 0.7250
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Table 6: Experiment III: Kullback-Leibler distance between the distribution of errors of
the Lustig and Van Nieuwerburgh (2005) and Fama and French (2015) models, assuming a
Gaussian distribution, and the pseudo Kullback-Leibler distance for a Student-t(5) distribu-
tion obtained via simulation, and using a Wild bootstrap with a Rademacher distribution
obtained via simulation.

Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25

T Gaussian distribution

1968Q1 - 2005Q1 41.68 85.26 140.47 197.50
1968Q1 - 1977Q4 32.62 90.99 179.45 255.90
1978Q1 - 1987Q4 25.88 75.41 148.95 236.24
1988Q1 - 1997Q4 21.65 81.13 107.42 271.27

t(5) distribution

1968Q1 - 2005Q1 0.90 4.24 7.33 -1.01
1968Q1 - 1977Q4 6.80 19.84 50.56 45.62
1978Q1 - 1987Q4 0.25 2.32 22.81 11.68
1988Q1 - 1997Q4 -1.90 2.58 12.54 21.97

Wild bootstrap

1968Q1 - 2005Q1 -9.36 -1.02 -39.98 -54.24
1968Q1 - 1977Q4 6.03 -7.32 -26.98 -54.82
1978Q1 - 1987Q4 0.41 -5.09 -57.76 -63.48
1988Q1 - 1997Q4 8.84 -4.54 11.55 -35.26
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Table 7: Experiment IV: Fama and French (2015) vs. Pástor and Stambaugh (2003), Lettau
and Ludvigson (2001) and Lustig and Van Nieuwerburgh (2005). Empirical size for the para-
metric bootstrap with Gaussian and t(5) errors, and the wild bootstrap with a Rademacher
distribution.

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.0494 0.0461 0.0483 0.0481 0.0494 0.0466 0.0467 0.0460
1968Q1 - 1977Q4 0.0524 0.0512 0.0487 0.0499 0.0526 0.0495 0.0530 0.0530
1978Q1 - 1987Q4 0.0489 0.0540 0.0516 0.0515 0.0522 0.0475 0.0484 0.0491
1988Q1 - 1997Q4 0.0485 0.0515 0.0520 0.0522 0.0526 0.0560 0.0538 0.0539

Wild bootstrap

1968Q1 - 2005Q1 0.0554 0.0552 0.0594 0.0575
1968Q1 - 1977Q4 0.0607 0.0696 0.0761 0.0728
1978Q1 - 1987Q4 0.0550 0.0532 0.0607 0.0560
1988Q1 - 1997Q4 0.0581 0.1091 0.1082 0.0847

Table 8: Experiment IV: Fama and French (2015) vs. Pástor and Stambaugh (2003), Lettau
and Ludvigson (2001) and Lustig and Van Nieuwerburgh (2005). Empirical power (DGP:
Pástor and Stambaugh (2003)) for the parametric bootstrap with Gaussian and t(5) errors,
and the wild bootstrap with a Rademacher distribution.

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.7911 0.9822 0.9925 0.9992 0.4966 0.8233 0.8823 0.9658
1968Q1 - 1977Q4 0.5697 0.9439 0.9943 0.9699 0.3686 0.7931 0.9531 0.9279
1978Q1 - 1987Q4 0.4125 0.7967 0.9901 0.9888 0.2444 0.5838 0.9358 0.9611
1988Q1 - 1997Q4 0.7605 0.9345 0.9962 0.9414 0.4984 0.7626 0.9622 0.8743

Wild bootstrap

1968Q1 - 2005Q1 0.7253 0.9574 0.9714 0.9876
1968Q1 - 1977Q4 0.5158 0.7662 0.8580 0.5668
1978Q1 - 1987Q4 0.2825 0.5271 0.7656 0.5755
1988Q1 - 1997Q4 0.7227 0.8416 0.9432 0.5656
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Table 9: Experiment IV: Fama and French (2015) vs. Pástor and Stambaugh (2003), Lettau
and Ludvigson (2001) and Lustig and Van Nieuwerburgh (2005). Empirical power (DGP:
Lettau and Ludvigson (2001)) for the parametric bootstrap with Gaussian and t(5) errors,
and the wild bootstrap with a Rademacher distribution.

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.7262 0.9529 0.9406 0.9831 0.4402 0.7224 0.7075 0.8348
1968Q1 - 1977Q4 0.4872 0.8073 0.9242 0.7590 0.3095 0.6075 0.8101 0.6789
1978Q1 - 1987Q4 0.2516 0.5541 0.8925 0.9199 0.1651 0.3705 0.7431 0.8468
1988Q1 - 1997Q4 0.4305 0.6964 0.9341 0.8464 0.2571 0.4758 0.8082 0.7458

Wild bootstrap

1968Q1 - 2005Q1 0.6698 0.9048 0.8747 0.9262
1968Q1 - 1977Q4 0.4450 0.6234 0.6502 0.4003
1978Q1 - 1987Q4 0.1556 0.3442 0.4521 0.4010
1988Q1 - 1997Q4 0.4127 0.6204 0.8002 0.4562

Table 10: Experiment IV: Fama and French (2015) vs. Pástor and Stambaugh (2003), Lettau
and Ludvigson (2001) and Lustig and Van Nieuwerburgh (2005). Empirical power (DGP:
Lustig and Van Nieuwerburgh (2005)) for the parametric bootstrap with Gaussian and t(5)
errors, and the wild bootstrap with a Rademacher distribution.

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.6082 0.8923 0.9670 0.9622 0.3584 0.6068 0.7699 0.7546
1968Q1 - 1977Q4 0.6775 0.9225 0.9900 0.8632 0.4474 0.7559 0.9412 0.7801
1978Q1 - 1987Q4 0.3899 0.6363 0.8896 0.6550 0.2314 0.4374 0.7347 0.5439
1988Q1 - 1997Q4 0.3266 0.6644 0.8148 0.7342 0.2003 0.4406 0.6441 0.6280

Wild bootstrap

1968Q1 - 2005Q1 0.5677 0.8087 0.8765 0.8673
1968Q1 - 1977Q4 0.5672 0.7374 0.7871 0.3764
1978Q1 - 1987Q4 0.3287 0.4406 0.4875 0.2331
1988Q1 - 1997Q4 0.2870 0.5880 0.5900 0.3665
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Table 11: Experiment IV: Kullback-Leibler distance between the distribution of errors of the
Pástor and Stambaugh (2003) and Fama and French (2015) models, assuming a Gaussian
distribution, and the pseudo Kullback-Leibler distance for a Student-t(5) distribution ob-
tained via simulation, and using a Wild bootstrap with a Rademacher distribution obtained
via simulation.

Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25

T Gaussian distribution

1968Q1 - 2005Q1 8.29 24.60 46.94 78.78
1968Q1 - 1977Q4 13.73 43.50 79.77 178.67
1978Q1 - 1987Q4 10.25 46.93 63.78 211.34
1988Q1 - 1997Q4 27.33 56.99 94.71 359.38

t(5) distribution

1968Q1 - 2005Q1 -0.60 1.40 11.03 21.70
1968Q1 - 1977Q4 4.13 18.10 25.37 39.88
1978Q1 - 1987Q4 0.53 18.25 19.46 49.40
1988Q1 - 1997Q4 18.65 26.81 58.82 58.61

Wild bootstrap

1968Q1 - 2005Q1 -2.28 17.14 -12.47 28.68
1968Q1 - 1977Q4 0.51 31.92 -26.62 -62.58
1978Q1 - 1987Q4 10.61 43.29 -40.60 26.14
1988Q1 - 1997Q4 29.97 21.69 -1.81 37.86
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Table 12: Experiment IV: Kullback-Leibler distance between the distribution of errors of the
Lettau and Ludvigson (2001) and Fama and French (2015) models, assuming a Gaussian
distribution, and the pseudo Kullback-Leibler distance for a Student-t(5) distribution ob-
tained via simulation, and using a Wild bootstrap with a Rademacher distribution obtained
via simulation.

Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25

T Gaussian distribution

1968Q1 - 2005Q1 23.77 56.37 72.23 111.90
1968Q1 - 1977Q4 21.54 67.18 141.50 299.77
1978Q1 - 1987Q4 10.21 43.02 129.36 323.68
1988Q1 - 1997Q4 16.25 56.49 101.20 477.46

t(5) distribution

1968Q1 - 2005Q1 3.71 10.09 3.66 7.26
1968Q1 - 1977Q4 2.05 10.49 27.75 26.94
1978Q1 - 1987Q4 -3.31 -1.68 21.90 62.31
1988Q1 - 1997Q4 0.98 5.40 29.89 42.45

Wild bootstrap

1968Q1 - 2005Q1 9.84 -11.04 -28.43 -9.68
1968Q1 - 1977Q4 -2.40 -20.70 -66.07 -185.09
1978Q1 - 1987Q4 -2.62 14.62 -79.36 -75.40
1988Q1 - 1997Q4 12.62 -21.41 29.24 -34.26
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Table 13: Experiment IV: Kullback-Leibler distance between the distribution of errors of
the Lustig and Van Nieuwerburgh (2005) and Fama and French (2015) models, assuming a
Gaussian distribution, and the pseudo Kullback-Leibler distance for a Student-t(5) distribu-
tion obtained via simulation, and using a Wild bootstrap with a Rademacher distribution
obtained via simulation.

Industry Size Size & Book
n = 5 n = 12 n = 18 n = 25

T Gaussian distribution

1968Q1 - 2005Q1 18.97 45.61 75.09 101.48
1968Q1 - 1977Q4 27.74 82.29 160.38 299.85
1978Q1 - 1987Q4 17.28 53.60 123.11 293.85
1988Q1 - 1997Q4 12.68 52.22 86.45 449.41

t(5) distribution

1968Q1 - 2005Q1 0.91 4.24 7.33 -1.01
1968Q1 - 1977Q4 6.80 19.84 50.56 45.62
1978Q1 - 1987Q4 0.25 2.32 22.81 11.68
1988Q1 - 1997Q4 -1.90 2.58 12.54 21.97

Wild bootstrap

1968Q1 - 2005Q1 -9.36 -1.02 -39.98 -54.23
1968Q1 - 1977Q4 6.03 -7.32 -26.98 -54.82
1978Q1 - 1987Q4 0.41 -5.09 -57.76 -63.48
1988Q1 - 1997Q4 8.84 -4.54 11.55 -35.26

Table 14: Experiment V: Fama and French (2015) vs. Lettau and Ludvigson (2001) and
Lustig and Van Nieuwerburgh (2005). Empirical size for the parametric bootstrap with
Gaussian and t(5) errors, and the wild bootstrap with a Rademacher distribution.

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.0483 0.0471 0.0473 0.0468 0.0518 0.0444 0.0462 0.0488
1968Q1 - 1977Q4 0.0525 0.0506 0.0472 0.0458 0.0530 0.0481 0.0505 0.0509
1978Q1 - 1987Q4 0.0492 0.0530 0.0534 0.0553 0.0511 0.0473 0.0472 0.0491
1988Q1 - 1997Q4 0.0489 0.0486 0.0504 0.0534 0.0520 0.0539 0.0534 0.0500

Wild bootstrap

1968Q1 - 2005Q1 0.0573 0.0530 0.0559 0.0528
1968Q1 - 1977Q4 0.0537 0.0608 0.0695 0.0689
1978Q1 - 1987Q4 0.0512 0.0518 0.0550 0.0548
1988Q1 - 1997Q4 0.0596 0.1155 0.1158 0.0914
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Table 15: Experiment V: Fama and French (2015) vs. Lettau and Ludvigson (2001) and
Lustig and Van Nieuwerburgh (2005). Empirical power (DGP: Lettau and Ludvigson (2001))
for the parametric bootstrap with Gaussian and t(5) errors, and the wild bootstrap with a
Rademacher distribution.

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.7734 0.9725 0.9630 0.9924 0.4806 0.7688 0.7606 0.8765
1968Q1 - 1977Q4 0.5467 0.8734 0.9668 0.8814 0.3464 0.6838 0.8761 0.8085
1978Q1 - 1987Q4 0.2884 0.6190 0.9435 0.9781 0.1761 0.4138 0.8137 0.9358
1988Q1 - 1997Q4 0.4925 0.7721 0.9718 0.9407 0.2857 0.5312 0.8700 0.8641

Wild bootstrap

1968Q1 - 2005Q1 0.7239 0.9397 0.9103 0.9504
1968Q1 - 1977Q4 0.4920 0.6704 0.7276 0.4603
1978Q1 - 1987Q4 0.1674 0.3788 0.5125 0.5015
1988Q1 - 1997Q4 0.4535 0.6802 0.8662 0.5912

Table 16: Experiment V: Fama and French (2015) vs. Lettau and Ludvigson (2001) and
Lustig and Van Nieuwerburgh (2005). Empirical power (DGP: Lustig and Van Nieuwerburgh
(2005)) for the parametric bootstrap with Gaussian and t(5) errors, and the wild bootstrap
with a Rademacher distribution.

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.6606 0.9247 0.9807 0.9794 0.3928 0.6565 0.8221 0.8048
1968Q1 - 1977Q4 0.7407 0.9601 0.9966 0.9493 0.5003 0.8237 0.9744 0.8925
1978Q1 - 1987Q4 0.4445 0.7128 0.9433 0.7883 0.2591 0.4837 0.8071 0.6724
1988Q1 - 1997Q4 0.3663 0.7429 0.8899 0.8611 0.2192 0.4934 0.7178 0.7512

Wild bootstrap

1968Q1 - 2005Q1 0.6161 0.8610 0.9066 0.9055
1968Q1 - 1977Q4 0.6416 0.8160 0.8534 0.4303
1978Q1 - 1987Q4 0.3500 0.4895 0.5433 0.2728
1988Q1 - 1997Q4 0.3479 0.6678 0.6677 0.4795
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Table 17: Experiment VI: Fama and French (2015) vs. Pástor and Stambaugh (2003).
Empirical size and power for the parametric bootstrap with Gaussian errors, n = 5.

Empirical Size Empirical Power

T DM1983 DMBS JABS DM1983 DMBS JABS

68 - 73 0.0584 0.0518 0.0518 0.7763 0.7019 0.7019
73 - 78 0.0523 0.0471 0.0471 1.0000 1.0000 1.0000
78 - 83 0.0508 0.0461 0.0461 0.4274 0.3384 0.3384
83 - 88 0.0605 0.0540 0.0540 0.9144 0.8611 0.8611
88 - 93 0.0513 0.0509 0.0509 0.7744 0.7270 0.7270
93 - 98 0.0634 0.0500 0.0500 0.9560 0.9433 0.9433
98 - 03 0.0658 0.0511 0.0511 0.7933 0.7519 0.7519
03 - 08 0.0488 0.0530 0.0530 1.0000 1.0000 1.0000
08 - 13 0.0617 0.0516 0.0516 0.9991 0.9977 0.9977
13 - 18 0.0533 0.0496 0.0496 0.5954 0.4877 0.4877

4 Empirical Results

We present empirical applications of the multivariate JA test. Each table shows the MC p-

values for various test portfolios, computed using (2.32), for an observed statistic computed

using (2.24) with the LR criterion. We set the number of bootstrap replications B equal to

999. We test the following single hypotheses:

• Single Hypotheses:

Hypothesis I.a: H0: Fama and French (2015) vs. H1: Pástor and Stambaugh (2003).

Hypothesis I.b: H0: Pástor and Stambaugh (2003) vs. H1: Fama and French (2015).

Hypothesis II.a: H0: Fama and French (2015) vs. H1: Lettau and Ludvigson (2001).

Hypothesis II.b: H0: Lettau and Ludvigson (2001) vs. H1: Fama and French (2015).

Hypothesis III.a: H0: Fama and French (2015) vs. H1: Lustig and Van Nieuwerburgh

(2005).

Hypothesis III.b: H0: Lustig and Van Nieuwerburgh (2005) vs. H1: Fama and French

(2015).

The rejection decision of a given null model should not be interpreted in isolation, but rather

in conjunction with the rejection decision of the associated alternative model. Thus, each

single hypothesis consists of two parts; the first with what we have referred to as the null

model in H0 and the alternative model in H1, and the second with the alternative model in

H0 and the null model in H1. We also test the following multiple hypotheses:
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• Multiple Hypotheses:

Hypothesis IV : H0: Fama and French (2015) vs. H1: Pástor and Stambaugh (2003),

Lettau and Ludvigson (2001), and Lustig and Van Nieuwerburgh (2005).

Hypothesis V : H0: Pástor and Stambaugh (2003) vs. H1: Fama and French (2015),

Lettau and Ludvigson (2001), and Lustig and Van Nieuwerburgh (2005).

Hypothesis VI : H0: Lettau and Ludvigson (2001) vs. H1: Fama and French (2015),

Pástor and Stambaugh (2003), and Lustig and Van Nieuwerburgh (2005).

Hypothesis VII : H0: Lustig and Van Nieuwerburgh (2005) vs. H1: Fama and French

(2015), Pástor and Stambaugh (2003), and Lettau and Ludvigson (2001).

Hypothesis VIII : H0: Fama and French (2015) vs. H1: Lettau and Ludvigson (2001)

and Lustig and Van Nieuwerburgh (2005).

Overall, there is no distinct pattern relating to n, the number dependent variables in the

multivariate regression. When T is larger, the p-values are generally lower, meaning that

the null hypothesis is rejected more strongly for the full sample.

Table 18 shows the result of testing H0 : Fama and French (2015) vs. H1: Pástor and

Stambaugh (2003), and vice-versa. Regardless of portfolios type and error structure, we fail

to reject the null hypothesis of the Fama and French (2015) model at the 5% level in the

1988-1998 period, while the Pástor and Stambaugh (2003) model is rejected at the 5% level.

This implies that the profitability and investment factors of the Fama and French (2015)

model are better suited to describe asset returns than the liquidity factor during this period.

Outside of the 1988-1998 period, we rejected both models most of the time, suggesting that

both models suffer from misspecification.

Table 19 displays the p-values for the hypotheses H0: Fama and French (2015) vs. H1:

Lettau and Ludvigson (2001) and H0: Lettau and Ludvigson (2001) vs. H1: Fama and

French (2015). In the case of Gaussian errors, we fail to reject the Fama and French (2015)

model at the 5% level for all time periods. The lowest p-values are 0.0220, for the full sample

and n = 12, and 0.0270, for the 1998Q1 - 2005Q1 period, with n = 25. On the other hand,

we fail to reject the Lettau and Ludvigson (2001) model 5% for all but 5 cases. The results

for the t(5) distribution are similar. For the wild bootstrap, we fail to reject H0 at the 5%

level in all cases except for the 12-industry portfolios with the full sample under hypothesis

II.a, and for the 25 size and book portfolios during the 1988Q1 - 1997Q4 period under

hypothesis II.b. These results are consistent with Prescription 1 in Lewellen et al. (2010):

it is much more difficult to reject a model when the dependent variables are sorted by the

same characteristics as the right-hand side variables. Using portfolios based on exogenous
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sorts such as industry characteristics results in rejecting of the said models, at least in large

samples.

Table 20 shows the p-values for hypothesis III.a and III.b. In the Gaussian case, the

Lustig and Van Nieuwerburgh (2005) model is rejected in favour of the Fama and French

(2015) model for n = 5, n = 18, and n = 25, at the 5% level for the full sample (T = 149).

For smaller sample sizes (T = 40), the Fama and French (2015) is rejected in the direction of

the Lustig and Van Nieuwerburgh (2005) model in the 1968Q1 - 1977Q4 period, for n = 18

(p = 0.0280). In turn, the Lustig and Van Nieuwerburgh (2005) model is rejected in the

direction of the Fama and French (2015) model for the size portfolios during the 1978Q1 -

1987Q4 period. The failure to reject the Fama and French (2015) model is not as pronounced

for this type of portfolios (p = 0.0640). Apart from these cases, we fail to reject both the

Fama and French (2015) and the Lustig and Van Nieuwerburgh (2005) models at the 5% level.

These decisions hold under the t(5) error case, with the exception of the 5-industry portfolios

for the full sample under hypothesis III.b (p = 0.0750). Accounting for heteroskedasticity in

the errors via a wild bootstrap reveals that neither model can be rejected at the 5% level.

Table 21 shows the results of testing the Fama and French (2015) model against the

union of the Pástor and Stambaugh (2003), Lettau and Ludvigson (2001), and Lustig and

Van Nieuwerburgh (2005) models. Under the assumption of Gaussian errors, we fail to reject

the null model at the 5% level, with the exception of the 1988Q1 - 1997Q4 with n = 5 and

n = 12. The decision for the t(5) case is the same as in the Gaussian case, except that for

n = 12, we barely fail to reject the null model at the 5% level (p = 0.0520). For the wild

bootstrap, we reject the Fama and French (2015) model for the 5-industry portfolios during

the 1988Q1 - 1997Q4 period, and we fail to reject H0 the rest of the time.

Tables 22 to 25 display the Monte Carlo p-values from testing a single model against

a compound hypothesis, via the hypotheses IV through VIII. The Monte Carlo p-values

are interpreted in a similar fashion as in Table 21. A caveat to this analysis remains,

however. The reverse of these multiple model hypotheses is unclear. To know whether the

null is rejected in the direction of the alternative, that is, in favour of the union of multiple

alternative models, could require the use of a model confidence set, of which the study is left

for future research.
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Table 18: MC p-values for the multivariate JA test, H0: Fama and French (2015) vs. H1:
Pástor and Stambaugh (2003) and H0: Pástor and Stambaugh (2003) vs. H1: Fama and
French (2015), parametric bootstrap with Gaussian and t(5) errors, and wild bootstrap with
Rademacher distribution.

Hypothesis I.a Hypothesis I.b

Gaussian errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

68 - 18 0.0010 0.0010 0.0010 0.0070 0.0010 0.0010 0.0010 0.0010
68 - 78 0.0010 0.0010 0.0200 0.0240 0.0010 0.0010 0.0010 0.0800
78 - 88 0.0030 0.0170 0.0390 0.1880 0.0040 0.0010 0.0010 0.0020
88 - 98 0.4330 0.3750 0.5470 0.5010 0.0010 0.0010 0.0040 0.0010
98 - 08 0.0050 0.0110 0.0100 0.0190 0.0750 0.0080 0.0130 0.0010
08 - 18 0.0010 0.0010 0.0100 0.0390 0.0010 0.0010 0.0010 0.0010

t(5) errors

68 - 18 0.0010 0.0010 0.0010 0.0020 0.0010 0.0010 0.0010 0.0010
68 - 78 0.0010 0.0010 0.0310 0.0360 0.0010 0.0010 0.0010 0.0730
78 - 88 0.0040 0.0190 0.0370 0.2030 0.0010 0.0010 0.0010 0.0010
88 - 98 0.4430 0.3700 0.5890 0.5380 0.0010 0.0010 0.0110 0.0010
98 - 08 0.0040 0.0060 0.0050 0.0090 0.0880 0.0170 0.0160 0.0010
08 - 18 0.0010 0.0010 0.0230 0.0330 0.0010 0.0010 0.0010 0.0010

Wild bootstrap

68 - 18 0.0010 0.0010 0.0010 0.0860 0.0010 0.0010 0.0030 0.0010
68 - 78 0.0010 0.0010 0.1300 0.0910 0.0020 0.0010 0.0010 0.1330
78 - 88 0.0150 0.0450 0.0590 0.2530 0.0050 0.0010 0.0010 0.0030
88 - 98 0.5500 0.4500 0.5170 0.5360 0.0010 0.0010 0.0050 0.0010
98 - 08 0.0170 0.0350 0.0370 0.0270 0.2200 0.0560 0.0320 0.0010
08 - 18 0.0010 0.0020 0.0770 0.2830 0.0010 0.0010 0.0010 0.0010
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Table 19: MC p-values for the multivariate JA test, H0: Fama and French (2015) vs. H1:
Lettau and Ludvigson (2001) and H0: Lettau and Ludvigson (2001) vs. H1: Fama and
French (2015), parametric bootstrap with Gaussian and t(5) errors, and wild bootstrap with
Rademacher distribution.

Hypothesis II.a Hypothesis II.b

Gaussian errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.0870 0.0220 0.3540 0.3380 0.0170 0.0040 0.1630 0.0220
1968Q1 - 1977Q4 0.1160 0.2120 0.0810 0.3230 0.0790 0.2380 0.2570 0.1140
1978Q1 - 1987Q4 0.8860 0.9450 0.4090 0.2680 0.3540 0.4370 0.2080 0.3270
1988Q1 - 1997Q4 0.5680 0.1930 0.0980 0.7780 0.7190 0.0680 0.2660 0.0180

t(5) errors

1968Q1 - 2005Q1 0.0870 0.0270 0.3720 0.3050 0.0220 0.0070 0.1730 0.0280
1968Q1 - 1977Q4 0.1380 0.2390 0.1010 0.3630 0.0840 0.2610 0.2800 0.1320
1978Q1 - 1987Q4 0.8900 0.9240 0.4690 0.3060 0.3730 0.4290 0.1740 0.3560
1988Q1 - 1997Q4 0.5650 0.2470 0.1410 0.7740 0.7200 0.0780 0.3020 0.0240

Wild bootstrap

1968Q1 - 2005Q1 0.1090 0.0490 0.5410 0.4690 0.1590 0.0830 0.8120 0.3280
1968Q1 - 1977Q4 0.2230 0.2840 0.0950 0.4270 0.4630 0.7150 0.6480 0.4740
1978Q1 - 1987Q4 0.9380 0.9590 0.7320 0.3170 0.4540 0.4430 0.2810 0.4290
1988Q1 - 1997Q4 0.5980 0.3650 0.0980 0.6800 0.6980 0.1820 0.3940 0.0140
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Table 20: MC p-values for the multivariate JA test, H0: Fama and French (2015) vs. H1:
Lustig and Van Nieuwerburgh (2005) and H0: Lustig and Van Nieuwerburgh (2005) vs.
H1: Fama and French (2015), parametric bootstrap with Gaussian and t(5) errors, and wild
bootstrap with Rademacher distribution.

Hypothesis III.a Hypothesis III.b

Gaussian errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.2870 0.2400 0.3130 0.6550 0.0470 0.1170 0.0120 0.0010
1968Q1 - 1977Q4 0.1030 0.0610 0.0280 0.6730 0.7970 0.9830 0.2440 0.4670
1978Q1 - 1987Q4 0.2790 0.4560 0.0640 0.7930 0.1590 0.4500 0.0390 0.3660
1988Q1 - 1997Q4 0.8350 0.5790 0.2500 0.4740 0.9210 0.8140 0.4900 0.2100

t(5) errors

1968Q1 - 2005Q1 0.2750 0.2650 0.3660 0.5940 0.0750 0.1700 0.0190 0.0010
1968Q1 - 1977Q4 0.1010 0.0770 0.0340 0.6910 0.7810 0.9880 0.2960 0.4890
1978Q1 - 1987Q4 0.2690 0.4800 0.1020 0.8170 0.1790 0.4570 0.0350 0.3720
1988Q1 - 1997Q4 0.8190 0.6030 0.2940 0.4950 0.9190 0.7960 0.4910 0.2170

Wild bootstrap

1968Q1 - 2005Q1 0.3420 0.3920 0.3980 0.7010 0.3030 0.6320 0.6430 0.0860
1968Q1 - 1977Q4 0.1740 0.1750 0.1210 0.8360 0.9840 0.9990 0.5840 0.7580
1978Q1 - 1987Q4 0.3840 0.5640 0.1580 0.7560 0.2280 0.4940 0.0780 0.4540
1988Q1 - 1997Q4 0.7170 0.7130 0.3100 0.4140 0.9110 0.8510 0.6440 0.1030
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Table 21: MC p-values for the multivariate JA test, H0: Fama and French (2015) vs. HC :
Pástor and Stambaugh (2003), Lettau and Ludvigson (2001), and Lustig and Van Nieuwer-
burgh (2005), parametric bootstrap with Gaussian and t(5) errors, and wild bootstrap with
Rademacher distribution.

Hypothesis IV

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.5510 0.2750 0.2430 0.4650 0.5160 0.2810 0.2580 0.4140
1968Q1 - 1977Q4 0.0840 0.0890 0.1500 0.3500 0.0930 0.1090 0.2050 0.3820
1978Q1 - 1987Q4 0.5230 0.6670 0.2130 0.8050 0.5300 0.6840 0.2520 0.8280
1988Q1 - 1997Q4 0.0430 0.0440 0.2600 0.4820 0.0380 0.0520 0.3200 0.5220

Wild bootstrap

1968Q1 - 2005Q1 0.5490 0.3960 0.3710 0.6130
1968Q1 - 1977Q4 0.1830 0.2700 0.3570 0.4940
1978Q1 - 1987Q4 0.6370 0.7500 0.4070 0.8030
1988Q1 - 1997Q4 0.0140 0.0990 0.2910 0.3760

Table 22: MC p-values for the multivariate JA test, H0: Pástor and Stambaugh (2003) vs.
HC : Fama and French (2015), Lettau and Ludvigson (2001), and Lustig and Van Nieuwer-
burgh (2005), parametric bootstrap with Gaussian and t(5) errors, and wild bootstrap with
Rademacher distribution.

Hypothesis V

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.1000 0.0740 0.0070 0.0490 0.1290 0.0940 0.0210 0.0570
1968Q1 - 1977Q4 0.0920 0.1920 0.2770 0.2570 0.1120 0.2280 0.3310 0.2710
1978Q1 - 1987Q4 0.3400 0.5550 0.3240 0.7610 0.3600 0.5650 0.3120 0.7840
1988Q1 - 1997Q4 0.3590 0.0310 0.7800 0.0580 0.3310 0.0550 0.7670 0.0690

Wild bootstrap

1968Q1 - 2005Q1 0.1290 0.0940 0.0210 0.0570
1968Q1 - 1977Q4 0.1120 0.2280 0.3310 0.2710
1978Q1 - 1987Q4 0.3600 0.5650 0.3120 0.7840
1988Q1 - 1997Q4 0.3310 0.0550 0.7670 0.0690
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Table 23: MC p-values for the multivariate JA test, H0: Lettau and Ludvigson (2001) vs.
HC : Fama and French (2015), Pástor and Stambaugh (2003), and Lustig and Van Nieuwer-
burgh (2005), parametric bootstrap with Gaussian and t(5) errors, and wild bootstrap with
Rademacher distribution.

Hypothesis VI

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.1460 0.0930 0.1310 0.1270 0.1730 0.1060 0.1610 0.1250
1968Q1 - 1977Q4 0.0680 0.0830 0.1180 0.1710 0.0790 0.0880 0.1700 0.1850
1978Q1 - 1987Q4 0.2090 0.4160 0.2150 0.7890 0.2230 0.4050 0.2010 0.8110
1988Q1 - 1997Q4 0.1910 0.0200 0.5620 0.1920 0.1770 0.0270 0.5900 0.2120

Wild bootstrap

1968Q1 - 2005Q1 0.3250 0.3150 0.5930 0.4800
1968Q1 - 1977Q4 0.3320 0.4100 0.5010 0.5250
1978Q1 - 1987Q4 0.2540 0.4520 0.2520 0.7540
1988Q1 - 1997Q4 0.2040 0.0780 0.6790 0.1670

Table 24: MC p-values for the multivariate JA test, H0: Lustig and Van Nieuwerburgh
(2005) vs. HC : Fama and French (2015), Pástor and Stambaugh (2003), and Lettau and
Ludvigson (2001), parametric bootstrap with Gaussian and t(5) errors, and wild bootstrap
with Rademacher distribution.

Hypothesis VII

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.2160 0.2170 0.0240 0.0020 0.2420 0.2310 0.0250 0.0010
1968Q1 - 1977Q4 0.5140 0.6840 0.5340 0.5540 0.4940 0.6960 0.5400 0.6030
1978Q1 - 1987Q4 0.2620 0.3810 0.0840 0.3650 0.2840 0.4170 0.0770 0.3760
1988Q1 - 1997Q4 0.0510 0.1440 0.3430 0.4910 0.0490 0.1620 0.3790 0.5440

Wild bootstrap

1968Q1 - 2005Q1 0.4340 0.5950 0.5330 0.1070
1968Q1 - 1977Q4 0.8430 0.8730 0.7450 0.8070
1978Q1 - 1987Q4 0.4020 0.5470 0.1780 0.3580
1988Q1 - 1997Q4 0.0280 0.3310 0.5220 0.3550
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Table 25: MC p-values for the multivariate JA test, H0: Fama and French (2015) vs. HC :
Lettau and Ludvigson (2001), and Lustig and Van Nieuwerburgh (2005), parametric boot-
strap with Gaussian and t(5) errors, and wild bootstrap with Rademacher distribution.

Hypothesis VIII

Gaussian errors t(5) errors

Industry Size Size & Book Industry Size Size & Book
T n = 5 n = 12 n = 18 n = 25 n = 5 n = 12 n = 18 n = 25

1968Q1 - 2005Q1 0.3810 0.2150 0.2380 0.5500 0.3540 0.2270 0.2680 0.4950
1968Q1 - 1977Q4 0.1150 0.0870 0.1140 0.4960 0.1070 0.1110 0.1340 0.5220
1978Q1 - 1987Q4 0.5120 0.5730 0.1880 0.7340 0.5360 0.6140 0.2430 0.7700
1988Q1 - 1997Q4 0.0970 0.1080 0.3420 0.7700 0.1170 0.1460 0.3960 0.7830

Wild bootstrap

1968Q1 - 2005Q1 0.3630 0.2770 0.3230 0.6050
1968Q1 - 1977Q4 0.2100 0.1950 0.2230 0.6220
1978Q1 - 1987Q4 0.6910 0.6930 0.3990 0.7640
1988Q1 - 1997Q4 0.0540 0.2000 0.4260 0.6860

5 Conclusion

We proposed multivariate extensions of exact specification tests for non-nested models that

can accommodate both simple and multiple alternatives. Our approach, which uses pseu-

doinverses to bypass regularity problems, yields an exact test in the Gaussian setting, as was

pointed in the literature for the univariate case. The MC p-value approach provides valid

results, whether the null distribution depends on nuisance parameters or not. Our extension

to multiple non-nested alternatives via a combined hypothesis addresses the growing problem

of model selection in asset pricing, but is also applicable in any field where specification tests

are necessary. Our simulation studies have shown that the multivariate JA test enjoys good

size and power properties, under both the Gaussian and non-Gaussian errors. Moreover,

we have shown via simulations that applying our method to the multivariate J test helps

to correct size distortions that occur in small samples. Our empirical results showed evi-

dence of misspecification for the Fama and French (2015) and Pástor and Stambaugh (2003)

models, as the test rejected these prominent models for most time periods. For most time

periods, the Fama and French (2015) model was not rejected against a compound alternative

hypothesis of multiple models.
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A Appendix

A.1 Proof of Lemma 2.1

Proof. Let yi ∈ RT denote the ith column of Y . Consider i ≤ n and let di denote the

event that yi is linearly dependent of yj, for all j 6= i. Let B be a Borel set of Lesbegue

measure zero. Since Uk is absolutely continuous, so is yi. The event that yi falls into any

set B ∈ RT has zero probability, by definition of an absolutely continuous random variable.

Thus, conditioning on all Xk, P (di) = 0 for all i, and the probability that all yi’s are linearly

dependent of each other is P (∪ni=1di). By the union bound, we have P (∪ni=1di) ≤
∑n

i=1 P (di)

for allB. Then, the probability that Y has full-column rank is 1−P (∪ni=1di) ≥ 1−
∑n

i=1 P (di).

Since P (di) = 0 for all i, Y has full-column rank with probability 1.
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